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Abstract:

The subiject of this thesis is “Modelling and Can-

trol of a Wheeled Mobile Robot”. Based on t

Tamiya TXT-1 Xtreme Truck [Tamiya, 2003], an

autonomous wheeled mobile robot is desig

and implemented. Due to practical problems,

only a limited amount of tests were perform
on the system.

The works is split into four main parts: Hardwdre
modifications and design, modelling, control and

developing an implementation framework. In the
modelling, three main models are been derived.

A kinematic model, a dynamical model and
odometry model.

an

Two controllers are designed and simulated.
Since the models are nonlinear, the controller
design uses nonlinear methods. The first gon-
troller is based on feedback linearization usjng

partial linearization. Since partial linearizati
is applied, only a controller for the kinematics

DN
is

designed. The second controller is a passivity-
based controller. Here both a controller for the

kinematics and the dynamics.
The original intent of the project group was

compare the two in practical tests, but this was
never achieved due to shortage in time. Instead

the controllers are compared using simulatigns.
The comparison reveals similarities of the con-

trollers, and indicates that the passivity-ba
controller is more robust to modelling errors.
Finally an implementation framework for the o

board computer is designed and implemented
and tests are performed on the odometry modlel.
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Instructions for the Reader

A CDiis enclosed to this project. References to files on the CD looks like this: (@B filename].

References to litterature are printed as [Lima, 1999] and refers to the Bibliography at the very
last pages of the project.

Some of the articles from the Bibliography are available in pdf-format on the enclosed CD. The
articles are found inarticles,. The filename is the same as the key used in the Bibliography.
Example [Wang, 1988] is wang.pdf.

An overview of the matrices used in the project is given in appendix G on page 143 for easy
lookup during reading.

Notational Conventions

Throughout the project matrix notation is used extensively. We refer te they identity matrix
by I,xn. FOr example:

1 00
Izxs=1|10 1 0
0 01
As with the identity matrix, an x n null matrix consiting of nothing but zeroes is referred to as
Omxn:
0 000
O4x3=10 0 0 O
0 000

The solution forx of the matrix equatiomx = 0 is called the null-space of the matri and is
refered to as:
N (A)
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Nomenclature

The position of the robot on the first axis of the frafne

The position of the robot on the second axis of the frdme

The orientation of the robot franié relative to the inertial framé.

The velocity of the robot in the direction of the first axis of the fralme
The velocity of the robot in the direction of the second axis of the frme

The change in orientation of the robot with respect to the frime

Generalized coordinate vector describing the configuration of the rgbet[¢ «y ]T .
Generalized coordinates for the posture kinematic mddel.1.

Vector describing the posture of the robot. The vector contajsandé.

Vector containing the four steering angles of the robot wheels.

Vector containing the four wheel angles of the robot.

The steering angle of the i'th wheel.

The wheel angle of the i'th wheel (the amount of angle of rotation for the i'th wheel around
its angle of rotation).

Vector containing the changes in steering andles (4.

Input to the kinematic model containing the linear veloejfy) and the change in steering
angles(. 3x1.

The linear velocity of the robot. A1.
The change in steering angle for wheels 1 and>1.1
The change in steering angle for wheels 2 and>31.1

Instantaneous Center of Rotation. The point the robot will be turning about.

The inertial frame in which the robot moves.



E The robot frame with center iR and rotatiorf with respect to the inertial franie
0] The origin of the framd.

P The origin of the framé&.

W; The i'th wheel.

Ry Radius of the wheels.

a; The angle between the first axis of the fraiand the line fronP to the i'th wheel contact
point A;.

CM  Center of mass for the frame of the robot.
d Distance from P to CM [m].
IF Moment of inertia for the frame.

Iw Moment of inertia for a wheel.

A Lagrangian multipliers.

Mg Mass of the frame for the robot [kg].

m Mass of a wheel [kg].

I Angle toCM in the E-coordinatesystem [rad].
Tr Kinetic energy of the frame of the robot.

Tw  Kinetic energy of a wheel.

r(t) A vector containing the reference for the posture and the derivative of the pasture.
v Input to the partial linearizatior8 x 1.

Vector which is related to.3 x 1.

<\

z Vector contaning the posture and the derivative of the poséure6.

m(q, u) Vector used to model the dynamics of the modek 1.

% Storage function used in the passivity-based control design.

\Y;
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CHAPTER 1

Introduction

In the recent years, as the hardware for mobile robots has been less expensive, the case of having
multiple robots cooperating to accomplish tasks has become increasingly interesting for research
and industry, with applications to areas such as deep water exploration, building surveillance,
transportation of large objects and rescue-operations after large-scale disasters. In short it is called
cooperative robotics, and is defined as a population of robots that are behaving as one distributed
robot to accomplish tasks that would be difficult (or impossible) for one single robot. The area
of cooperative robotics is of special interest to the project group since the group is following the
masters program in "Intelligent Autonomous Systems" at Aalborg University.

At Aalborg University projects concerning cooperative robotics has been explored over the last
years using two mobile robots, which are decribed in [Schiglat., 2001]. The projects are now
expanded to involve more than the two original robots, thus making the design and implementation
of new robots necessary. It has been decided that the frame for one of the new robots should be
based on the Tamiya TXT-1 Xtreme Truck [Tamiya, 2003], see figure 1.1, thereby making the
scope of this project the modification of the TXT-1 into an autonomous wheeled mobile robot.

Figure 1.1:The Tamiya TXT-1 Xtreme Truck that is to be modificated into an autonomous wheeled robot.

There are a variety of possibilities in the choice of the task for the cooperative robots to ac-
complish. At this stage no final conclusion has been drawn on the subject of the objectives for
the cooperative robots, but one possible scenario could be the task of distributing objects between
different stations. That would resemble the situation of AGV'’s working in a storehouse.

The modification of the TXT-1 into an autonomous wheeled mobile robot is substantial work.
The scope of the project is therefore limited to address the problems concerning control of the
robot. Areas such as communication, development of a common intelligence system and obstacle
detection and avoidance will not be posed.



1.1

1.2

1.2.1

Problem Specification

Regardless of the choice of the task for the cooperative robots to accomplish, the modified TXT-1
will need the ability to plan and track a trajectory between two points. The problem specification
is therefore:

How can a Tamiya TXT-1 Xtreme Truck be modified in such a way that it is able to generate and
track a trajectory between two given points?

To accomplish this, the overall requirements of the robot are that the following two things are
possible: Trajectory planning and trajectory tracking. Problems needed to be solved to design and
implement trajectory planning and tracking are elaborated in the following.

Classification of Problems

In order to fulfil the overall requirements stated in the above, various problem areas are adressed.
These can be cassified into four main topics:

1. Hardware modifications and design.

2. Modelling.

3. Control and pathplanner design and implementation.
4. Software design and implementation.

Each of the four problem areas will be discussed in the following.

Hardware Modifications and Design

The TXT-1, as it is when bought, only includes a frame, wheels, two motors for propulsion and
gearing between the wheels and motors. Motors for steering (called servos), batteries and hard-
ware for control of motors are not included, so these missing parts are to be bought or designed.
In other words: This area includes all the missing parts which needs to be bought plus additional
hardware which needs to be designed in order for the parts to communicate with each other.
Since a control algorithm for the robot is to be designed, the ability to determine its position
is necessary. Once finished the positioning of the robot should be based on a fusion of different
sensor informations. In this project the used sensor equipment will be limited to encoders on the
wheels, and thereby determine the position through odometry. The parts which needs to be bought
or designed are:

An onboard computer.

Two servo motors for steering of the front and rear wheels.

Speed controller to the motors for propulsion.

Hardware to establish communication between the onboard computer and the motors.

4 Chapter 1: Introduction



1.2.2

1.2.3

1.2.4

1.3

e Hardware to establish communication between the onboard computer and the wheel en-
coders.

e Batteries to supply motors for propulsion, motors for steering and the onboard computer.

Modelling

In order to be able to implement one or more controllers for the robot, a model of the robot is
needed. It is decided to develop both a kinematic and dynamical model for that purpose.

Having designed a controller using the kinematic and dynamical model, the outputs from the
controller are the steering angles for the servos and the torque to be applied to the DC-motor for
propulsion. A model of the relationship between the steering angles and the signal to be applied
the servo is therefore needed, as well as a DC-motor model describing the relationship between
the torque and the signal to be applied the DC-motor is needed.

The posture of the robot must be known at all times in order for the controller to work properly.
For that purpose an odometry model is derived, which is capable of determining the change in
posture using measurements from encoders.

Control and Pathplanner Design and Implementation

The pathplanner is responsible for planning the trajectory to be tracked by the robot controller.
The trajectory is timevarying. This means that for each posture on the trajectory, there is a time
defined. At this time, the robot should be at that posture.

The control design for trajectory tracking will be based on the models described in the above.
Since the models will be nonlinear, the controllers will be designed using nonlinear methods.

Software Design and Implementation

Two software structures needs to be designed. The first software structure is to be common for
all the robots in the cooperative robots project. Or in other words this software structure must be
platform independent. This software structure will not be adressed in this project, since it easily

amounts to a project in itself. The software structure that will be adressed here, is the second
software structure which is platform dependent. In this software structure the modeling and control
algorithm is implemented. In other words an implementation framework is designed, which makes

implementation of the pathplanner and the controller possible. This includes interfacing with the

servos and DC-motor and implementation of the odometry model.

Project Outline

Having elaborated the problems to be adressed in order to be able to solve the problem specifica-
tion, the outline of the rest of the project follows here.

The original intention of the project group was to implement and compare two different con-
trollers on the robot and to implement a pathplanner. Due to practical problems, it wasn’t accom-
plished to implement the two controllers on the robot within the time limits of the project. Thus

1.3. Project Outline 5



two controllers are designed, but unfortunately none of them was implemented in the robot, and
instead simulations of the two controllers are compared. Furthermore, due to time-shortage, only

The robot is equipped with servos at the front and rear wheel pair, but due to the odometry
model derived later, it is only possible to use the servo at the front wheel pair. The problem is that
for a odometry model for four-wheel steering to be developed, the steering angles of the front and
rear wheel pair must be known. That is not the case in the current implementation of the robot.
The control signal applied to the servos is known, and thereby it is known, what the steering angles
were intended to be. But due to large friction between the tires and ground, the intended steering
angles are not the same as the actual steering angles, and using these angles as steering angles
for the odometry model would introduce an error. To avoid this problem the odometry model is
developed with the rear wheel pair fixed in orientation. With this simplified odometry model, it is
a requirement of the controllers that only front wheel steering is used. Although for future use of
the controllers, they are designed using both front and rear wheel steering.

The project is split into six main parts: Introduction, Modeling, Control, Implementation,
Conclusion and Appendix. In part | after this introduction, a description of the robot and the
implementations made by the group is described in chapter 2. The general definitions of the
project is in chapter 3. In part Il on modelling the constraints for the robot are defined in chapter
4, and the kinematic model is derived in chapter 5. A dynamic model is derived in chapter 6,
and the DC-motor and servo-models are presented in chapter 7 and finally the odometry model is
derived in chapter 8. In part lll the controllers are derived. 9, and next a passivity based controller
is designed in chapter 10. The simple pathplanner is also described in the chapters concerning
the controllers. In chapter 11 the two controllers are compared using simulations. In part IV
the implementation of the software is described in chapter 12 and some tests are documented in
chapter 13. The conclusion and recommendations for future work are offered in chapter 14.

The overall structure of the project is illustrated in figure 1.2.

6 Chapter 1: Introduction
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Figure 1.2:Theoverall structure of the project.
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2.1

2.2

CHAPTER 2

System Description

This chapter describes the modifications needed to transform the TXT-1 truck from an ordinary
model-car into a wheeled mobile robot. First a description is given of the starting point, how the
TXT-1 truck was originally equipped. This is followed by the actually hardware modifications.

Original Equipment

Gear
Cardan shaft Cardan shaft

— | | MoTOR
Front wheel pair

N oo

Differential gear

Rear wheel pair

e

Figure 2.1:A sketch showing the frame of the TXT-1 truck.

Figure 2.1 shows the frame of the TXT-1 truck, as it appears when received from the manu-
facturer. The truck is delivered with and propelled by two DC-motors of Johnson type 540
[CD, \Datasheetslohnson_HC683G.pdf]. The motors are run in parallel and are attached to a
gear box. Two cardan shafts are attached to this gear box. One shaft drives the front wheel pair
and the other drives the rear wheel pair. Therefore the torque provided by the motors is equally
distributed between front and rear wheel pair. The cardan shafts are connected to differential gears.
When the car makes a turn, the distance the left and right wheel has to drive is not the same, thus
the left and right wheel has to rotate with different speeds. This distribution of speed among the
wheels are maintained by the differential gears.

The car is able to turn both the front and rear wheel pair. Naturally this turning is limited. In
figure 2.2 a top view picture of one of the wheel houses is seen, and the picture shows that the
turning is limited within+£20° = +2'rad.

Overview of Hardware Modifications

Figure 2.3 shows the structure of the parts in the hardware modification. As mentioned only
the DC-motors were available from the beginning. The remaining items were either bought or



Figure 2.2:The maximum steering angle for one wheel is20° to each side.

Onboard PC

Input interface Output interface

[

Encoders Servos DC-motor

Figure 2.3:The structure of the electrical hardware that was bought and implemented.

designed by the project group. In the top of figure 2.3 is the onboard computer. This is where the
controller is eventually implemented. The onboard computer maintains communication between
two parts: The input and output interface. Both input and output interfaces were designed or
bought. Below these interfaces, the actuators and encoders are seen. The motors (servos) to make
the car turn had to be bought. The encoders at the wheels to keep track of the wheels movement
had to be designed or bought as well. In the following sections a more detailed description is given
of the parts just mentioned.

2.3 Encoders

The task of the encoders is to keep track of the rotation of the wheels. The requirements for the
encoders are elaborated in the following.

2.3.1 Requirements

The encoder must be able to register the rotation of either the DC-motor axle, cardan shaft or the
wheel itself. The size and resolution of the encoder must be compatible with the size of the truck
and the desired precision of the trucks movement. Furthermore the encoders has to be robust and

10 Chapter 2: System Description



be able to cope with disturbances (shocks) when the car is in motion. Robustness against dirt and
dust is also preferable. The demands for the encoders can be summed up to:

e Reqgister rotation of motor axle, cardan shaft or wheel itself.
e Suitable resolution and size to meet the demands of precision in the trucks movement.

¢ Robust against small bumps and dust from the surroundings.

2.3.2 Design and Implementation

The idea of mounting an encoder on either the motor or the cardan shaft was rejected due to
a slackness or backlash between the gear attached to the motor and the differential gear at the
wheels. This backlash causes a slip between the rotation of the motor axle and the rotation of the
wheel. Therefore it was decided to mount the encoders directly at the wheels.

The choice of encoder resulted in the HEDR-8000 optical encoder from Agilent Technologies
(ICD, \DatasheetdHEDR-8xxx.pdf]). This encoder uses reflective technology to sense rotary or
linear position. The sensor consists of an LED light source and a photodetector IC in a single
SO-8 surface mount package. The sensor is used with either a reflective codewheel or codestrip.
In this project a codewheel of type HEDR-5120 is used.

The advantage of the chosen encoder is first and foremost its size. It is very small, thus
implementable directly behind the wheel, attached to a piece of print inside the wheel housing.
Figure 2.4 shows how the HEDR-8000 encoder is mounted inside the wheel house. The code

Figure 2.4: HEDR-8000 in the wheel house at- Figure 2.5: Codewheel glued on the back of the
tached to a piece of print. wheel rim.

wheel is glued to the back of the wheel rim. This is depicted in figure 2.5. When the encoder
is placed correctly with high precision, the encoder is able to detect the reflective/nonreflective
pattern of the codewheel. When the wheel rotates this results in two signals shown on figure 2.6.
The signals, A and B are delayed 180 electrical degrees relative to each other. These two channels
are used to detect whether the wheel is rotating clockwise or counter clockwise. This interpretation
is done on the basis of which signal, channel A or B, leads the other.

2.3. Encoders 11



2.4

24.1

2.4.2

Output Waveforms

Amplitude

CH. A

Y

Amplitude

CH.B

[
-

Codewheel rotation

Figure 2.6:Wnen the wheel rotates and the encoder and codewhesl is placed correctly relative to each other, the
signals appears as depicted above. Two channels, A and B, delayed 180 electrical degrees relatively.

Input Interface

The raw signals from the two encoders is useless for the PC. They will have to be translated into
understandable data, which then can be transmitted up to the PC. Both translation and transmission
to the PC is done by the input interface.

Requirements

First of all the input interface has to retrieve the signals from the encoders and convert them into
useful data for the PC. The encoder signals has to be converted into a number that tells how much
the wheel has rotated. Furthermore the input interface has to send the information about the wheels
position to the PC. The requirements for the interface are:

e Decode signals from encoders.

¢ When requested, send information about wheels position to PC.

Design and Implementation

For decoding the signals from the encoders, it was decided to use the HCTL-2020 qudrature
decoder/counter from Agilent Technologies ([CIDatasheetdHCTL-2000.pdf]). This device

can decode the quadrature signals from the encoders, and has a 16-bit up/down counter. In
addition it has a parallel bus interface. Due to this bus interface it was decided to add a mi-
croprocessor to the input interface. The chosen mocroprocessor is PIC16F877 from Microchip
([CD, \Datasheets30292c.pdf]). This microprocessor shall both handle the communication to
the HCTL-2020 as well as the communication to the PC. The communication to the PC is done
from the microprocessor to a COM port on the PC using the RS-232 standard. The ampli-
tude of the signals in the RS-232 standard uses voltages ranging betiéghand+15V and

the signals from and to the microprocessor uses the TTL starilarand +5V. Therefore a
driver/receiver is neccesary to convert the signals between the two standards. The MAX232 de-
vice ([CD, \DatasheetdlAX232,232l.pdf]) was chosen to perform this conversion. Figure 2.7
shows the path of communication from the encoders to the PC.

12 Chapter 2: System Description



Input interface

|

|

Encoder at Decoder/counter |
wheel 2 | (HeTL2020) [ |
|

(HCTL -8000) |

ICropracessar 4 nver/receiver
| Mi | Driverfrecei
(PIC16F877) o (MAX232)

PC

- COM2

Encoder at
wheel 3
(HCTL -8000) [

2 Decader/counter
| (HCTL-2020)

Figure 2.7:The path of communication between the two encoders at the wheels to the PC.

The microprocessor in figure 2.7 is the intelligent device in the input interface and software
had to be written to make it work as the connecting link between the encoders and the PC. Instead
of programming the microprocessor in assembler, the software was written in C. This C-code was
then compiled into a hex-file using a PIC C-compiler named CC5X. The CC5X is available in a
free limited edition, and this compiler was used with MPLAB. MPLAB is a development software
that besides being an editor also gives the programmer the possibility of testing the code before
implementing it in the microprocessor. MPLAB is free and can be downloaded at the Microchip
homepage.

Usually the generated code is written into the microprocessors memory using an EEPROM
writer. Instead of this approach the software written by this project group was downloaded to the
microprocessor using a bootloader. In short the bootlader is a piece of software that is written
to the microprocessors memory in the usual way. The bootloader makes it possible to download
new usercode (i.e. written by the project group) through a serial connection an unlimited number
of times, without conflicting with the bootloader code. This has been a fast and reliable way of
programming the microprocessor. The bootloader is explained in greater detail in appendix H on
page 149.

In figure 2.8 the software flow in the microprocessor is seen. A further description of the code
will not be given in this report, but the code can be found in [§Dodé PIC16F877].

2.5 Servos

The servos task is to turn the wheels of the truck when requested from the controller. In the
following the requirements for the servos are listed.

2.5.1 Requirements

e Turn the wheels when requested from the controller.

e Fast and reliable response.

2.5. Servos 13
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2.6

2.6.1

Main program Interrupt service routine

Start Start

Y

Initialization of .
arallel Received a
parallel 'H’ from PC?
communication
No Yes
' A
Initialization of Get new encoder
serial values from the
communication Interrupt - byte decoders
received
-
v N/ v
Do nothin Send new encoder
g values to PC
>

\ J
Stop

Figure 2.8:The main software flow in the microprocessor.

Design and Implementation

Tamiya, the producer of the TXT-1 truck, has some recommendations in order of selecting servos.
These recommendations though is not compatible with the needs in this project. The modifica-
tions of the truck have resulted in a considerable weight increase. The servos needed, have to
be more powerful than the ones suggested by Tamyia. Two servos of type Hitec HS-705MG
([CD, \DatasheetHS-705MG.pdf]) was bought. These units are high torque servos which are
controlled with a3V to 5V peak to peak square wave pulse signal. The power supplied to the
servos must be within the range 4.8V to 6V.

Output Interface

Both the DC-motors and the servos is controlled by pulse width modulated (PWM) signals. There-
fore a link between the PC and the actuators is required. This link is the output interface, which
will be explained in the following.

Requirements

The main task of the output interface is to convert data signals from the PC into PWM powered sig-
nals delivered to the DC-motors and the servos. The data signals from the PC are values calculated
from the controller that corresponds to the steering angle on the wheels and the desired output of
the DC-motors. Like the input interface, it was decided that the communication between the PC
and output interface should be done through a RS-232 based serial connection. The requirements
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2.6.2

2.7

2.8

for the output interface are:
e Serial communication with PC, based on RS-232 standard.

e Convert data signals from PC into PWM powered signals to DC-motors and servos.

Design and Implementation

Instead of designing the hardware in the output interface from scratch, it was chosen to buy the
parts needed. To make the communication from the PC possible the Mini SSC Serial Controller
(ICD, \Datasheetssc2_mnl.pdf]) was chosen. Input to this board, from now on called the SCC-
controller, is a three byte command written through a serial connection. Output is up to eight
PWM signals. The two servos are connected directly to this board. It is not possible to connect
the DC-motors directly to the SSC-controller, due to higher power consumption than the SCC-
controller is able to handle. Instead a speed-controller was bought to supply the DC-motors with
the needed power. The speed-controller is connected to the SCC-controller. Figure 2.9 shows the
path of communication from the PC to the motors and servos.

Output interface 3

PC |
s)
COM1 | » SSC-controller | Speed-controller

Rear servo

Figure 2.9:The path of communication in the output interface fromthe PC to the actuators.

Onboard Computer

The final part part is the PC. Several things were taken into account before the PC was purchased.
These considerations is presented in the following section.

Requirements

First of all the size of the computer is of great importance, due to the limited space available on
the robot. The power consumption of the computer is significant too, because it is supplied by
batteries. The power consumption is tightly related to the CPU size, but still a powerful processor
is needed to make it compatible with future projects as well. These future project most likely

involving processor demanding image processing. Furthermore it is important that the PC offers

2.7. Onboard Computer 15



possibilities for extensions in the need of using different cards i.e. using PCl or PC-104 technolo-
gies. Last of all, the economic aspects is of great importance. All the above considerations leads
to the following requirements:

e Physical size shall be compatible with the space available on the robot.

e Low power consumption.

Sufficient CPU power (i.e. also to be used in future projects, involving image processing).

Room for extensions (PCl and PC-104 slots).

Affordable within the budget for this project.

2.8.1 Design and Implementation

Three types of computers were candidates to be used on the robot. These were a PC-104, a
labtop and a single board computer. Advantages and disadvantages were weighted. From earlier
work and experiences with mobile robots the project group suggested the use of a labtop. Due to
economic aspects this proposal was rejected. The labtop itself is expensive to buy, and in addition
to the computer itself comes the different devices to interface the accessories, i.e. encoders and
actuators. The single board computer was selected, mainly because of greater CPU power than the
one supplied in the PC-104. Besides, the single board computer has easy access of using regular
PC-interface cards, which in general is cheaper than the accessories available for a PC-104. The
chosen PC was the LS-561 ([CBDatasheetd S-561-11.pdf]), a single board computer with a

VIA C3 1000 MHz lowpower consumption processor. The boards main features are:

e VIA C3 1000 MHz processor.

128 MB RAM.

20 GB harddisk 2.5".

5.25" EBX socket 370 PC133 littleboard.

4xAGP 3D SVGA.

Intel PRO/100+ LAN.

PC/104+ interfaces.

e 4 COM/LPT/2 USB.

The single board computer is not embedded in a box when delivered. Some kind of protection
is needed when the board is attached to a wheeled mobile robot. Therefore the computer and
harddisk was built in a plastic box. The harddisk mounted in an anti vibration kit. Furthermore
parts of the input and output interfaces was built in the box. (Maske et bette billede af vores fine
kasse her OG EN LILLE AFRUNDNING)
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CHAPTER 3

General Definitions

In this chapter the definitions for the robot will be stated. The definitions will be used in future
modeling and control design. The definitions includes coordinate frames, coordinate vectors and
notation.

3.1 Coordinate Frames

To describe the posture (position and orientation) of the robot, two coordinate fiaand® are
defined.I is the inertial frame, in which the robot is moving. Attached to the robot center is the
frameE. The frameE has origin in the center of the robot (the pof}, and is rotated with
respect to framé. The two frames are illustrated in figure 3.1.

\

Figure 3.1:TheframesT and E. The coordinates x and y decribes the position of the center of the robot with respect
to I, and 6 describes the orientation of the robot with respect to I.

17



3.2 Rotation Between Frames

A point x in framel is written as'x and®x is the notation for the same point in frarfie The
rotation of a point in framé to E is performed with the rotation matriR(6)

cosf sing O
R(6) = | —sin® cosf 0 3.1
0 0 1

The rotation fromiE to T is performed usingz—1(8) = R (6).

3.3 Coordinate Vector

The posture of the robot is described entirely by the coordinate véctdrich is defined as
E=[x y 6 (3.2)

This is the decription of the frani& with respect to the frame

3.4 Wheels

The wheels are numbereétl;, i = 1..4, and the contact point of each wheel are caledThe
contact point is defined as a single point, where the wheel and the surface meet.

{E}
A
e
W, 2 W,
Ay A
L]
¢
0‘1
>
P e
L] o
A, Ay
W, W,

Figure 3.2:Theframe E with origin in the center of the robot.

3.4.1 Position
The position of each of the four wheels on the robot are describ&dhy the polar coordinate
(i, i), where the length is the distance from the origin @ to the contact pointy; is the angle
with respect to the first axis d.
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3.4.2 Steering Angle

To describe the steering angles of the wheels with respect to the first axis of thdfthmangles

«; are defined, as illustrated in figure 3.3. Since the front wheel pair as well as the back wheel pair
are connected mechanically by a rod, the two wheels in front as well as the two wheels in the back
have the same steering angles:

Y=Y A Yo="3 (3.3)

Thus it is only necessary to consider the two angleandy, to describe the steering angles of
the robot. These two angles are members of the vector

Y=I1n 7 v 7Yl (3.4)

Figure 3.3:Wnhed 1 seen from above. The steering angle of the whee! is described by the angle «y. Here only whee!
lisillustrated.

3.4.3 Wheel Angle

To describe the rotation of each wheel in the wheel plane around the rotation axis of the wheel, the
anglev; is defined as illustrated in figure 3.4. The vectois defined to contain the four angles

(28

Y= [Y1 Yo Y3 Y]’ (3.5)
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Figure 3.4:Awheel on the robot seen from the side.

3.5 Generalized Coordinate Vector

The generalized coordinates of the robot is defined as the vector

3
a=1 (3.6)
4

The generalized coordinate vector describes the full configuration of the robot including posture
and steering and wheel angles.
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CHAPTER 4

Constraints

In order to be able to simulate and design a controller to the robot, a mathematical model of the
robot is needed. The overall model can be split into two main parts: A kinematic and a dynamic
model. The dynamic model describes the relation between the applied torques (from the motors)
and the resulting changes in velocities. These velocities are translated into displacement by the
kinematic model. The development of the two models and a model for the motor will be the
subject of the following.

The robot used in this project is a low cost prototype, and therefore presents the non ideal
conditions of electromechanical systems, namely friction, gear backlash, wheel slippage and actu-
ator saturation. Taking these non ideal conditions into account, the modeling of the robot is based
on some assumptions. It is assumed that the robot is constructed as a rigid frame. The wheels
mounted on the robot are considered nondeformable and perfectly round. Furthermore they only
have contact with the ground in a point (the contact point), and since the robot is to be used for
indoor experiments, the robot is assumed to be moving on a horizontal plane at all times.

The method used to derive both the kinematic and dynamic models are described in [Cham-
pion, 1996]. Both models are derived using the general pure rolling without slipping-contraint,
meaning that no slip and no lateral movement is allowed for any of the wheels. [Further descrip-
tion of the method used is needed here]. The method has been used succesfully in the modeling
of a robot for agricultural use [Sgrensen, 2001], [Tarozzi, 2002].

In general two types of motion for the robot are considered: Straight and turning. During
straight motion all four wheels are parallel with the robot frame, and the wheels are covering the
same distance (the torques applied to each wheel are all equal). If the robot is turning, the setup is
not that simple. In order to make the robot turn and comply with the pure rolling and no slipping
conditions, the robot has to turn around an instantanous center of rotation (in the following: ICR)
according to [Champion, 1996], see figure 4.1. Due to the construction of the wheel suspension
the two front wheels as well as the two rear wheels have the same steering angle. This means that
it is not possible to have an ICR, and thereby it is not possible to have turning motion without
violating the constraints. It is though assumed that the error in steering angle (and ICR) will be
neglectable. The error of ICR is illustrated in figure 4.2.

Two constraints are imposed on each of the four wheels: They are not allowed to slip dur-
ing motion, and no lateral movement is allowed. The constraints are described in detail in the
following.

Rolling without slipping A wheel slips if the velocity of the contact poidt in the wheel plane
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Figure 4.1: The concept of an instantaneaus cen-
ter of rotation (ICR). The axles of rotation of all four
wheelsintersect in the ICR.

Figure 4.2:AnICRisnot possible for the robot in
this project, since the wheelsin both the front and rear
wheel pair have the same steering angles.

is different from the linear tangential velocity of the wheel at the contact point.

No lateral movement Lateral movement occurs when the sum of velocity components orthogo-
nal to the wheel plane in the contact point is different from zero.

In the following the two constraints will be derived for one wheel. Afterwards the constraints will
be generalized to all four wheels.

Rolling without slipping

As stated in the previous, the contact between the wheel and the ground is supposed to satisfy
the rolling without slipping condition. This means that the velocity of the contact pogitould

be equal to the linear velocity of the wheel. The situation is illustrated in figure 4.3 and can be
expressed as

Rui = va (4.1)

whereR),, is the radius of the wheelj the angular velocity of the wheel ang is the velocity

of the contact point. The velocity components are illustrated in figure 4.4. The coordinate of the
contact point A is(ax, a,, a-), with a, equal to zero, since only the andy dimension are of
interest. Calculations of the velocity of A yields:

va = cos(8 + /) ax +sin(8 + )4, (4.2)
and inserting equation 4.2 in 4.1 results in
cos(6 + ;) ax +sin(6 + )18, = Ry, (4.3)
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Figure 4.3:Whedl with linear velocity 4 Rw . Figure 4.4:No slip condition.

To reduce this expression, we seek expressionsifand'a, in the following. The position
of the contact point A in the framg can be expressed using its polar coordinates as

Eay 2; cos o
an = E,‘ sin (071 (4.4)
Ea, 0

The position of the contact poirt with respect to the inertial franlecan be determined as

La, Ea, Ix [ ¢ cosa;+ Ix
la, | =RT) | Ba, | + |y | =RT(8) | tisina;+y
Ta, Ea, Tz i 0
X +£; (cos@ cosaj —sin@sina;) | X + £ cos(8 + ;)
= | y+4i(sinfcosa;+cosfsina;) | = | y+4£isin(0+ ;) (4.5)
0 | 0
Taking the derivatives yields
Tay = % — 0¢;sin(6 + ;) (4.6)
13, = y + 64; cos(6 + a;) 4.7)

Inserting the derivatives from equations 4.6 and 4.7 in 4.3 and applying geometrical relations
yields

cos(8 + ;)% +sin(8 + )y + 0[sin(8 + ;) cos(8 + a;)—

sin(6 + aj) cos(8 + )4 — Rw¥i =0

4

x (cos @ cosy; —sin@siny;) +

y (sin 6 cosy; + cosfsiny;) + (4.8)

0L;sin (v — ;) — Rw¥i = 0
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Rearranging this expression usii{f) and¢ yields the following matrix-equation, which ex-
presses the no lateral movement-constraint for one wheel.

[cos(yi) sin(i) &isin(yi — a)]R(0)E — Ry =0 (4.9)
/ la /
/ ! /
/ /
< /
cos(0 + i)Iél
W,
/Ai / Iax
/ Vs
sin(0+7y,)'a,
/ N0+,
—— == — —
/

Figure 4.5:No lateral movement.

4.2 No Lateral Movement

To ensure no lateral movement of a wheel, the sum of the two velocity components orthogonal to

the wheel plane must be zero, see figure 4.5. This can be expressed as

sin(8 + ;) ax — cos(8 +v;)'a, =0 (4.10)

Once again inserting equations 4.6 and 4.7 in 4.10 and applying geometrical relations a similar

result to the one found earlier is derived:

X (sin@ cosy; + cos@sinvy;) —

y (cosfcosy; —sinfsinvy;) — (4.11)
fcos(a; —;) =0
U
[siny; —cosvy; —4£cos(a;—;)] R(6)E=0 (4.12)

This is the matrix-equation describing the no lateral constraint for one wheel.

4.3 Constraint Matrix

The constraints of the robot can be written under the general matrix form extending the equations
4.9 and 4.12 to a general matrix-form expressing the constraints for all four wheels. These matrix
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equations can be substituted into the constraint matremd will be the subject of the following.
For the no slip-constraint:
L(MR(B)E — LY =0 (4.13)
Where:
cosy; sinyr £ysin(y; —ay)
. 0 si _
J(y) = | 0572 s Losin(y, = o) (4.14)
cosvys sinvys {£3sin(yz — az)
cosys Sinys £4sin(ys — ag)
And:
Rw

0 0
Rw 0
4.15
P (4.15)

o O O

0
Jo =

0 O w
0O 0 0

BV
S

And for the no lateral movement-constraint:
C1(7)R(0)E =0 (4.16)

With C; being:
siny; —cosvy; —£;cos(ar — Y1)
siny, —cos7y, —4pcos(an —¥2)
CGim =] _ (4.17)
siny3 —cosvys —{3cos(as —y3)
Sinyg —cosvys —4L4cos(0qg — Ya)

To describe the constraints imposed on the robot, the constraint Mmagieonstructed as:

A— JL(MRE) 0 -k

= (4.18)
Ci(r)R(E) 0 0
such that: _
£
ANg=N| v | =0 (4.19)
¥
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CHAPTER 5

Kinematic Model

The objective of developing a kinematic model is to find a description of the change in generalized
coordinates ¢) for the robot based on the inputs to the model, which in this case will be the linear
velocity of the robot, and the changes in the steering angles in the front and back wheel pairs. The
mathematical notation of the model is

d=S(q)u (5.1)

whereS(q) is the kinematic model matrix; the model input and is the change in generalized
coordinates.

The kinematic model is derived by considering the constraints derived in the previous section.
Taking the no lateral movement-constraint into consideration it is seen that every R¢éipis
constrained to lie in the null-space 6f(+y) since:

Ci(MR(B)E =0 (5.2)

is of the formAx = 0. Defining%(vy) as the null-space af; (y):

() =N (Ci() (5.3)
then for every t, there exist a signg(t) such that:
R(6)€ = Z(7)n(t) = N (Ci (7)) n(t) (5.4)
when the constraints are fulfilled. By rearranging the expregsiam be isolated:
¢ =RT(OZ()n(t) (5.5)

Since it has been established tR{b)¢ = ¥ (v)n(t) the following substitutions in equation 4.13
results in:

JL(MRB)E -~ =0
I
P = Jy () Z(v)n(t) (5.6)

Having found expressions férandy an expression for the change in steering anglesneeded.
The steering angles of the front and back wheel pair are used as control inputs, so introducing the
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5.1

vector( containing two signals for change in the steering angles in the front and rear of the robot:

y=(= L B=0ANG=C (5.7)

The rank of C(7y)

The rank ofC; is of special interest. If rariC;(«y)) = 3 the only solution to equation 5.2 is
R(6)¢ = 0 which implies zero velocity and thereby no motion of the robot. Therefore the rank
must be less than three:

rank(C1(7)) < 2 (5.8)

The rank ofC;(y) depends on the design of the mobile robot in question. Furthermore the rank
of C1(7) is equal to the number of wheels that can be oriented independently in order to steer the
robot [Champion, 1996].

The restrictions put on the robot mobility in equations 4.13 and 4.16 restricts any non-straight
motion of the robot to turn around an ICR. The axis of rotation of all the wheels should intersect
in this point. This is not possible for this robot, but as stated earlier it is assumed that the error will
be neglectable.

In appendix F.3 the rank df; (y) has been evaluated using algebraic and numerical methods.
It it shown that the rank of;(vy) is 2 when the following is satisfied:

Yr="Y20ry1=—y=0x+pm, p=0,1,2... (5.9)

Further numerical analysis of the singular values reveals that the effective ra&nfydfcan be
assumed to be 2. The assumption that the rank is 2 for all anglgsroplies that two of the
rows in Cy(vy) are linear combinations of the two other rows and allows the following reduction
of C1(vy) into C3 (7y):

[ sin vy —cosyr —4icos(a; —1)

Cr(7) = siny, —cos7ys —4£pcos(a — ¥2)

1 siny3 —cosvys —{3cos(as —y3)

| sinys  —cosva —44 cos(agq — Ya)

[ sin v; —cosvy; —£jcos(a; —yp)
siny; —cos7y; —£jcos(aj—"y, .
~ ! i el W) i) (5.10)

0 0 0
| 0 0 0

The indices/ and; are referring to the two wheels that define the ICR, the robot will be turning
about. Due to the design of the wheel suspension (and thereby the fact that an ICR for all four
wheels is impossible), the wheels in question will be different according to the direction of the
turn. This matter will be discussed in more detail in section 5.3.
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5.2

5.3

Calculation of ¥ (vy)

Having come to the conclusion that the effective rankCgfy) is 2, ¥ (v) is calculated as the
null-space ofC; () using MAPLE. The result is:

£; cos(y;) cos(a; — ;) — £; cos(;) cos(y; — o)
() = | 4Lisin(vy;)cos(a; — ;) — & sin(7;) cos(v; — o) (5.11)
sin(y; — ;)

Determining / and J

As stated earlier the indicesand; in 5.11 refer to the numbers of the wheels (1 and 2 or 3 and

4) defining the ICR. The ideal solution to determining which wheels to use, would be to use the
same two at all times. This is not possible though. If for instance wheel 1 and 2 were to define
the ICR at all times, the robot would not be able to turn as hard to the one side as the other. Orin
other words, all slippage is assumed to happen on wheel 3 and 4.

Position

y [m]
-
g

x [m]

Figure 5.1:A smulated trajectory of the robot with constant linear velocity n = 0.6Z and the same magnitude of
¢1 and ¢» (the change of steering angles) when turning. The two ICR used are both defined fromwheel 1 and 2.

The resulting trajectory could in that case be as illustrated in figure 5.1, where the inputs to the
model are the same when driving in both circles. Clearly the radii of the circles are not equal as
they were supposed to be. The problem arises of the fact that the two ICR are defined from wheel
1 and 2. If wheel 1 and 2 defines the ICR at all times, the distance from the center of the robot
to the ICR will be different according to which side the robot will be turning to. The problem is
illustrated in figure 5.2.

The solution is to use one version Bf(y) for turning left, and another version for turning
right. [Missing: Only necessary in simulations, not in “real life”] The two matrices will be called
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Y

Figure 5.2:The cause of the different radii. The ICR s defined by wheel 1 and 2. The resuilt is that wheels 1 and 2
will cover the solid line circle, and the center of the robot will move on the dashed line circle. As seen the diameter of
the two dashed line circles are not the same, thus the trajectory isincorrect.

>/ (y) for left and X (-y) for right:

() =%(y) (5.12)

i=1
=2

Tr(y) =Z(7) (5.13)

=3
J=4

Sincel; = £, = {3 = 44 the only differences between, () andXz(vy) are the angles; and
a; and the angles; and-y;. «y; and+y; are variable, buty; anda; are constants. Replacing tfis
and,’s results in:

[/ cos(7y2) cos(ay — 1) — I cos(y1) cos(y2 — aa) |
Yi(v) = | Isin(y2)cos(ar —y2) — Isin(y1) cos(vo — a2) (5.14)
sin(y1 —72)

[ /cos(vs) cos(as —v3) — I cos(7y3) cos(ya — ta) |
Tr(Y) = | Isin(ya)cos(az —y3) — Isin(v3) cos(vya — aa) (5.15)
sin(ys — 4)

The criterion used to choose betweEn(y) and X (y) is defined by the angleg, and~y, as
illustrated in figure 5.3. By evaluating the difference between the steering angle of the front wheel
pair and the rear wheel pair, it is possible to determine to which side of the robot the ICR is placed.
To sum up, the criterion for choosirig(vy) is stated in table 5.1. As stated in table 5.1 the choice

of X (v) is free, ify; = > = 0. In this case the trajectory of the robot will be a straight line
parallel to the robot frame. Thus the distance from the center of the robot to the ICR will be the
same, and thereby ensuring the same trajectory of the roBat(if) or =, (y) is used. Having
definedX(y) the kinematic model can be written as:

3 RT(0)<(y) 0
=14 | =S(qu= 0 I [ Z ] (5.16)
P b h(ME(Y) 0
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Y1 'sz =0AND
v, 20 Vi-v2>0

Figure 5.3:The situations evaluated to choose the correct ¥ ().

Criterion > (v) used

M =7=0 Does not matter.
Y1 —72<0 Zr(7)

Y1 —Y2=0AND~y; >0 ()

Y1 —72=0AND; <0 Zr(7Y)
Y1—72>0 ()

Table 5.1: The criterions used for choosing between ¥, (v) and ~r(vy). The criterions are only to be used in the
simulations, since the problem only exists when plotting the trajectories.

5.4 Posture Kinematic Model

The kinematic model can be reduced if only the posguséthe robot needs to be considered. This
is e.g. the case when a controller needs to be designed. The reduced model is called the posture
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kinematic model [Champion, 1996]. The kinematic model is given as:

3 RT(O)(y) O
Gg=| 4 | = 0 lava | U (5.17)
0

P 5t h(MZ ()

In equation 5.17/ are the velocitie$n ¢ ¢» (3 ¢s]”. Due to the mechanics of the robot, the
front wheels are always parallel and likewise are the back wheels. It is therefore only necessary to

consider¢; and¢,. The inputu, to the posture kinematic model is therefore defined as:
u=1[n ¢ &I (5.18)
Another simplification is found in equation 5.17. Becayis#toesn’t have any influence on the

posturet in the kinematic model. The posture kinematic model is therefore:

3 n
RT(6)T 0
Gok = | M1 | =S (apk) tpk = [ (3 ™ , ] (1 (5.19)
. 2X2
Yo ¢

Verification of the Kinematic Model

5.5
Verification of the kinematic model is possible but letting all the steering angles be equal to zero:
(5.20)

’Y,'ZO, i=1...4

Substituting these angles into the expressiorfoy) yields:

2¢sin (% — o)
Y(vy) = 0 (5.22)
0
The change in postuge
2cosflsin (5 — o)
£=RT(O)Z(Vn(t) = | 2sinbLsin (T —a1) | n(t) (5.22)
0

From this equation it is seen, that fér= 0, the change in posture is zero fprand8, implying
that the robot only moves along the x direction. Tlusan be interpreted as the linear velocity of

the robot with the unitsﬂ.

5.6 Simulations
The posture of the robot is described by the coordinate véctord an expression fwas found
in equation 5.5
€= RT(O)Z(7)n(t)
In MATLAB a simulation integratingt over time was implemented. The input to the simulation

was changed over time as illustrated in figure 5.4. The resulting trajectory is seen in figure 5.5.
The trajectory is as expected, and it is noted that the problem with different radii in circles has

been solved.
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Figure 5.4:The three inputs to the kinematic model in the simulation. In the top the linear velocity 7 is seen, and
below the changes in steering angles ¢; and ¢, are plotted.
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Figure 5.5:Theresulting posture of the robot with the inputs from 5.4 using only the kinematic model . The simulation
isrun for 95 seconds and reveals that the robot posture is as expected.

5.7 Summary

The kinematic model derived in the previous can be summed up as

g=S(q)u (5.23)
Y
3 RT(O)Z(y) 0O .
g | = 0 / [ ] (5.24)
P ST h(ME(y) 0 ¢
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The kinematic model derived expresses the change in the robots configuration (the generalized
coordinate vector) as a function of the control inguand(. 7 is the linear velocity of the robot

and¢ = [¢; ¢»]" is the change in the front and rear steering anglesvill eventually be
applied by the DC-motor, and the changes in steering arglasd (, will be applied using the

servo motors. The matriX(-y) varies according to which side of the robot, the ICR is placed.
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6.1

CHAPTER 6

Dynamical Model

In this section a dynamical model of the robot is derived. The dynamical model describes the
relation between the torquesfrom the motors and the resulting change in velocitiesThe

relation between the torques and the resulting change in velocities isn’t a simple straight forward
calculation. The approach to the problem is to consider the energy of the robot. Applied torque
from the motor will change the energy of the robot. Based on this change in energy, a resulting
change in velocities can be found. The relation between energy, torques and change of velocities
can be found through Lagrange equations. The Lagrangi{ang) of the system is given as

the difference between the kinetic enerflyq, ¢) and the potential energy/(q) of the system
[Oriolo, 1995]:

L(q,d)=T(q,q) —W(q) (6.1)

The dynamical model is derived from Lagrange equations with extension of Hamilton’s principle
to nonholonomic systems. The used Lagrange formalism is:

- 3 5 = AN+ Q(g)T (6.2)

d <8 L(q, d)) _0L(q.9)
Whereg is the generalized coordinates akhds undetermined Lagrange multiplierd(q) is the
transpose of the constraint matrix aQdq) is a matrix, which maps the the external inpuatsto
forces/torques performing work an

Because it is assumed that the robot is moving in a horizontal plane the potential energy re-
mains constant. Since only changes in the energy of the system will have an effect and result in a
change of velocities the constant potential energy can be neglected. The Lagrangian of the system
is therefore equal to the kinetic energy. In order to reduce the calculations the kinetic energy is
partioned into energy in the franTe and energy in the wheelgy. In the following sectiong ¢
andTy is found as an expression of the state variables in

Kinetic Energy of the Frame

The frame of the robot is approximated with a rectangular rigid body. The kinetic energy of the
frame is the sum of the energy from the linear and rotational movement around the center of mass
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CM:

1 1
Tr = EMFVQ + EIFOUQ (6.3)
U
1 2 2 L 4
Tr =5 Me(xcy +Yom) + 51F8 (6.4)

Wherev is the linear velocity foilC M andw is the angular velocity aroundM. M is the mass
of the frame andr is the moment of inertia for the frame jhg - n7]. With the definitions given

ycm

|
|
|
|
|
|
|
|

 J

cm

Figure 6.1:Definitions used to find the coordinates for the center of mass C M.
in figure 6.1 theC M with the coordinate$x-ns, yca) in the inertial frame is given as:

Xcm = x+ dcos(6 + p) (6.5)
yem = y+dsin(6+p) (6.6)

The derivative of equation 6.5 and 6.6 is:

Xcm = X —60dsin(6 + p) (6.7)
Yem = y +60dcos(8 + p) (6.8)

Inserting equation 6.7 and 6.8 in 6.4 yields the following expression for the kinetic energy of the
frame:

R U D TV I
TF = 2/W[:X +2Mpy +2MF9d +2/F9

—x8dME sin(8 + p) + y8d Mg cos(8 + p) (6.9)
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6.2 Kinetic Energy of a Wheel

It is assumed that the wheel is perfectly round. Furthermore the contact area between the wheel
and the ground is assumed to be a point to minimize complexityRl.ee a point on the edge of
the wheel as shown in figure 6.2. Let the poffyt have an infinitesimal small masss,, which

Figure 6.2:Awheel on the robot seen fromthe side.

spansd®y [rad] on the edge of the wheel. Assuming that the entire mass of the wheel is evenly
distributed along the edge with an angular dengilig/rad], the massmp,, is:

mpy, = pdy

The kinetic energy of, is:

1

1
Ty = Empwv,%w = §Pd¢V/%W

Wherevp,, is the linear velocity ofF,. The kinetic energy of a whedl, is found by integration
of all the masses around the wheel:

1 27
Tw = = / 2Py
0

2
U
1 27 2
Tw=3 [ (Vorrre+) pov
U
O N
Tw=3 ; (Xp +yp + 2p)pd (6.10)

The pointP,, is described with respect to the inertial frame with the following equations:

xp = x-+lcos(a+0)+ Ry, cos(¢)cos(y+ 6) (6.11)
yp = y+Isin(a+0)+ Ry cos(¢)sin(y + 6) (6.12)
zp = Ry sin(y) (6.13)
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The time derivatives of the coordinates are:

xp = x—I0sin(a+0) — Ry sin(y)cos(y + 6)

— Ry cos(¥) sin(y + 6) — R, 0 cos(yp) sin(y + 6) (6.14)
yp = y+18cos(a+6)+ Ry sin(y)sin(y + 6)

+ R4 cos(9) cos(y + 8) + R0 cos(v) cos(y + ) (6.15)
zp = Ry,¥cos(y) (6.16)

The next step is to find the square of equation 6.14, 6.15 and 6.16 and inserting in equation 6.10.
The calculation of this is substantial and can be found in appendix F. The result found in appendix
Fis:

1 1 .
Tw = 5>‘<2m + 5me + mlf(ycos(a + 0) — xsin(a + 6))

1 272 1 12,1,2 1 L2 1 A 1 )2
+2/ 0°m+ 2th9 P +4IW7 + 21W97+ 4IW9 (6.17)
Where the following two relations has been used:

m = 2mp (6.18)
ly = mR2 (6.19)

mis mass of a wheel which is assumed to be equal for the four whigelsthe moment of inertia
for a wheel.

Total Kinetic Energy

The total kinetic energy for the robot is a sum of the energy from the frame and the energy from
the four wheels. In the following equations it is assumed that the distaisoequal for the four
wheels:

4

Trota = TrF+ Z Twi (6.20)
i=1

1 1 1.
= 5>‘<2(M,: +4m) + EyQ(MF +4m) + 5192(4/2m + 2l + d’MFr + IF)
1 & 1< 1 4
.2 i ; .
+ZIW;7,- + Z/WZ;Q/},- + 5/We);ny,- (6.21)
1= 1= =

4
—x6 <2dMF sin(6 + p) + m/Zsin(a; + 0))
i=1

4
+y8 <2dMF cos(6 + p) + mlz cos(a; + 9))
i=1
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Introducing the matrices M angl/ s as:

/ 0O 0 O
Mg + 4m 0 —2d Mg sin(p) — mI % sin(ay) é‘/ P
M = 0 Mg +4m 2dM,:cos(,o)~|—le?:1 cos(aj) |, Ilwm= 0 8/ | 0
0 0 42m+ 2l + d*Mg + | W
W P 0 0 0 Iy
YT = Wi v Y393l v =lw. Iw. Iw Iw]
The total kinetic energy can then be written as:
1.7 1 N 1 1. _
Trotal = 5€' R (O)MR(9)¢ + 27 lwmY + 2 wmd + S0l (6.22)
Or in a more compact form as:
1. .
Trotal = 54D(9)q" (6.23)
whereD(q) is called the inertia matrix and is defined as:
I o 0 0 1
[RT(6)MR(8)] 0 0 0 0 03x4
L Ly Ly L
>Iw  SIW  SIW  SIW
00 3w w0 0 0
00 3w fw 0 0
1 1 04><4
D(q) = 0 0 iy 0 iy O
00 Iy 0 0 i
w0 0
0 Iy 0
0 0 2
4x3 4x4 0 0 §/W 0
i o 0 0 i |
(6.24)
6.4 Removal of Lagrangian multipliers
Consider again used Lagrangian formalism from equation 6.2:
d (0L(g.4)\ 9L(q.q)
— - = A(g)\ 6.25
(2 9 _ a@n+Qarr (6.25)

In this section the Lagrangian multiplieksare removed because they are undetermined and there-
fore unwanted in the model. Before the Lagrangian multipliers are removed the terms in equation
6.25 needs to be determined.

The matrixA(q) is equal to the transpose of the constraint matiixvhich is known from
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section 4.3:

J(VRO) 0 —h

;
N=A"(q) = CLMRE) 0 0 (6.26)
4
RT(6)J] (v) R™(6)C] ()
A(q) = 0 0 (6.27)

—J] 0

The inputT are torques performing work on the generalized coordinates. The work is performed
on+y and. No forces are directly performing work grand the matrix@(q) therefore becomes:

Q(q) = [ Do ] (6.28)

The Lagrangian of the systeimn(q, ¢) was equal to the total kinetic energy,:o;. Unless
otherwise is statedr,:,; will from now on be refered to as to reduce the length of the equations.
The left side of equation 6.25 can be written as:

or oT

i(aL(M)>_“(q'q)_i(@_T)_@_T_i 5t || ot | (629
dt o4 0q dt \ 9g 0g dt g_; g_;
oY oY

With equation 6.27 and 6.29 the Lagrangian formalism from equation 6.25 is can be written as:

d (0T oT
g (8—5) % = RTOImA+RTOCT () (6.30)
d (0T oT
d (0T oT
g (%> ~2 = Dty (6.32)

Where)\; and )\, are the Lagrangian multipliers. A short hand notatii for the terms on the
left side of equation 6.30-6.32 is used in the following:

d (0T oT

— =) == =T

T (as> og =Tk
In order to eliminate the Lagrangian multipliers equation 6.30 is multiplied ®tfy)R(9) and
equation 6.32 is multiplied witl." (v)J] (7)(J, *)7. Thus results in:

ST RO)TIe = =T (N IH (VA +ZT ()] (Ao (6.33)
STH (LY Ty = - (NH A +ZTWH ML) 7y (6.39)

SinceX (vy) is the null space of;(7) itis known that:

Z(Y)Ci(y) =0=X"(7)C{ (7) (6.35)
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Thereby the second term on the right side of equation 6.33 becomes zero. Adding equation 6.33
and 6.34 removed;. The three equations 6.30, 6.32 and 6.31 is reduced to:

ST (ROTIe + H (NLHT[Tly) =T (NIH (ML 7y (6.36)
[Tly =7y (6.37)

In appendix F.4T ¢, [T]y and[T], is found to be:

[Tk = PE+PET S Kalwyy — KT RT(O)NR(O)E (6.38)
1 .

[Ty = Slwmy (6.39)

7], = %/WM’Y+%9/WK2 (6.40)

whereK, K>, N, andP are defined as:

Ki = [001]" (6.41)

Ky = [1111] (6.42)
0 0 —1i6M;

N = 0 0 ZOM, (6.43)

—360M5 30M, O

M, 0 (M cos(8) — M3 sin(9))
P = 0 M (M sin(8) + M5 cos(8))
1(Mscos(8) — Mssin(8))  &(Msysin(8) + Ms cos(6)) My
(6.44)

Equations 6.38, 6.39 and 6.40 are inserted into equations 6.36 and 6.37:

E7 () [RO)(PE + PE+ S Kl — K1€TRT()NR(9)E)

71 -- -~
NGO S| = ZT (I (NH Ty (6.45)
1 N
EIWM’Y + EeleQ =Ty (6.46)

The last step is to substitute the terfng), 4 and¢ with terms containing the control inpygtto
the kinematic model. Hereby obtaining state equations for the dynamical model which describe
the relation between the torque inpasandr, and the output. The terms fo€, ¢, 4 and¢ is
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know from the kinematic model and are:

£ =RT(0)(7)n (6.47)
¥ =1y h(VEZ(N)n = EMZ()n (6.48)
. C1

Y= ol ¢ (6.49)

U

£=RT(OZ(7)n+RT(O)L(V)n+ R (O)Z(7)n (6.50)
P = EMZ(7)n+ EMI()n + E(V)Z(7)n (6.51)
= (6.52)

Substituting these expressions into equation 6.45 and 6.46 yields:

=7 () [R(6) (PR (O)Z(v)n + PIRT (O (v)n + R (O)E()n + RT (O)(v)1]

2

£ Kl € — KT ()RR ()NR(O)RT (B)=(1)n)

FET ) 3l EMZ (0 + EME (0 + EMEZ ()]
= T (ME"(Mmy (6.53)

1
2

1.
—lwmC + 59/\/\//’(2 =Ty (6.54)

Equation 6.53 and 6.54 can be rewritten as:

Where:

F(v)

f(y, u)

(7, u)

fa(7y, u)
H(y)

H1(7)

H(y)u+ f(y,u) = F(7)T (6.55)

-
L Ty
[ ST(YET(Y) 0 ]

0 laxa

| R(v.v)
TT()|[RO)PRT(6) + RO)PRT (6) +

: fi(7, u) ]

—R(OYKinZ " (v)N + %ET(’Y)IWME(’Y)] ()

[ROPRT(6) + =7 (MR()3ET (M ED] (0] 1+ 5 Kl
1

6l K
29W 2
H1(y) 0
0 Llwm

Z(MIRE)PRT(O) + 3 E7 (1w EMIZ()
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6.5

With equation 6.55 a state space model for the robot can be written as:

H(y)u = —f(y,u)+ F(y)T (6.56)
g = S(qu (6.57)

Simulations

In order to verify the dynamical model, the simulation of the kinematic model was expanded to
include the dynamic model of the robot. The dynamic model takes torques for propugjon (
and steeringt,, andr.,,) as inputs. For the propulsion the same torque is applied to each wheel,
and for the steering torque is applied at the front and rear wheel pair. The inputs for the simulation
are plotted in figure 6.3. At time 2 a torque is applied to propulsion, and at the same time torque
is applied to the rear wheel pair steering. No torque is applied to steer the front wheel pair. The

Model Input
0.4 T
B L |
Z 0.2
I—’a 0 _I
Il Il Il Il
0 5 10 15 20
0.4
B
E 02 | N -
=
[d 0 L
Il Il Il Il
0 5 10 15 20
0.4
B
Z, 0.2r .
QL
[ d 0 [
L
0 5 10 15 20
Time [s]

Figure 6.3:Theinput used for the simulation of both the kinematic and dynamic model. In the top the torque applied
to the wheels propulsion is seen. The second and third plots are the torques applied to the change of steering in the
front and rear.

resulting trajectory of the robot is available in figure 6.4. As expected the robot is turning, but
after some time, the trajectory becomes a straight line. When the rear wheel pair is steered, the
robot frame is rotating. The rotation of the robot frame makes the steering angle of the front wheel
pair change (one can say that the robot frame is rotating above the front wheel pair). The changes
in steering angles ends when the steering angles of the front and rear wheel pairs are parallel
resulting in a straight line trajectory. The fact that the steering angle of the front wheel pair is
changing because of the steering angle of the rear wheel pair is more obvious from figure 6.5. The
plot shows the steering angle of the front and rear wheel pair. The front angle is in the left side,
and the rear angle is in the right side of the plot. The rear steering angle is changing as the torque
is applied, but the angle of the front pair is changing slower due to the momentum of the robot.
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Figure 6.4: The resulting trajectory from the kinematic and dynamic model using the input from figure 6.3. Since
thereisonly applied steering to the rear wheels, the robot frame turns until the front and rear wheels are parallel. Note
that no torque is applied to the front wheel steering.
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Figure 6.5:Thewheel anglesfor the front (Ieft side of the plot) and rear (right side of the plot) whee! pair. The angle
of the rear pair changes when the torque is applied, and the angle of the front pair changes over time afterwards.
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CHAPTER 7

DC-motor and Servo Model

7.1 DC-motor

In this section a model for the DC-motors including SSC-controller, speed-controller and gears are
derived. Figure 7.1 shows the blocks included in this model. The first block in the left side of the

N \ \ T T
m,y, kSSC SSC > k speed > H(S) m n Wy

'speed

\ 4

SSC-controller Speed controller DC-motor Gear

Figure 7.1:Overview of the connections between the SSC-controller, speed-controller, DC-motor and gear.

figure is the SSC-controller which converts a one byte sighateceived from the computer to a
PWM signalvssc which is transmitted to the speed-controller. The speed-controller converts the
PWM signalvssc to a PWM powered signak,eqq. In this project the SSC and speed-controller
are considered to be a linear gain between the value of a 8 bit binary djgfim the computer

to the voltagevspeeq-

First a model for the SCC-controller and the speed-controller is found. As mentioned earlier
both the SSC and the speed-controller has PWM signals with finite amplitude as outputs. To make
these blocks easier to model, they are considered as one black box withNp@urtd output
Vspeed- It IS @assumed that the output can be considered as DC-voltages ranging-fr@nv’ to
7.2 V, though they really are pulse width modulated. From now on we call this sigyégjj.

An experiment was performed with the SSC-controller and the speed-controller to determine the
gain. Binary values was written to the SSC-controller to determine the resolution from full throttle
backwards to full throttle forward. Table 7.1 shows the results of the test. Assuming linearity, the

N [8-bit signal] | v/,..,[V] Comment

57 -7.2 Full throttle forward
127 0 -
197 7.2 Full throttle backward

Table 7.1: Measurements of the relationship between the 8-bit signal to the servo and the voltage fed to the motor.
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model of the SSC-controller and the speed-controller is
Nm = Vepeeghom + A (7.1)

where N, denotes the 8-bit value from the computer,.., the output of the speed-controller,
km the adjustment factor anti the offset. The adjustments facty, is calculated:

(197 -127)

Km =5 9.72 (7.2)

and the offset is:
A =127 (7.3)

Now the blocks SCC- and speed-controller in figure 7.1 can be replaced with the block seen in
figure 7.2.

127

Nm N,m L V,sgeed >
K

m

SSC-/speed-controller

Figure 7.2:Thetwo blocks for SCC- and speed-controller in figure 7.1 is reduced to the one depicted above.

Next an expression for the DC-motor is found. Figure 7.3 shows the frame of the TXT-1. In
Ty v
P 4 >

— MOTOR )‘

{ L voror \r

o L w I

4 4

Figure 7.3:The TXT-1 frame with DC-motors, cardan shaft and differential gears.

the following model it is assumed that the wheels rotate with the same speed at all times, even
when turning, though this is not the case in real life. This assumption is made to distribute the
torque from the motors equally between the wheels. The input to the DC-motor is the wgjtage
and the output is the resulting torqumg, which is equally distributed to front and rear wheel pair.

Figure 7.4 shows the electrical circuit of the motors and the gears. In the model the following
assumptions are made:

e The two motors are modelled as one motor and the resulting targérem this motor is
divided by two.

e Motor is linear, thus static friction is not considered.
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Figure 7.4:Electrical and mechanical parts in the DC-motors

e Inductance., is not considered.
e The torquer,, is distributed equally to the wheels at all times.

The assumption about the inductance is made because the inductance is small, thus negligible.
From figure 7.4 the following equations can be derived for the electrical part:

Vo— VRa— Ve =0 (7.4)
Va— Raiy — ke = 0 (7.5)

The torque put on the axle is proportional to the curigeimt the armature through a constakit
The torquer,, is given by

Tm = IZkT (7.6)
The linear friction provides a torques to oppose the axle rotation
B = BTUJm (7.7)

Thus, the resulting torgusg, provided is given by equation 7.8.specifies the ratio of the gears.
T, €an be written as

Tw = (Tm — TN (7.8)

Substituting equation 7.6 and 7.7 in equation 7.8 yields

Tw=(iakt — Brwm)n (7.9)
U
kT
Tw= R_(Va — KeWm) — Brwm | n (7.10)
S
Isolating v, gives
T R
Va=keWm + (—~ + Brwm)—2 (7.11)
n kT

From equation 7.10 the block diagram in figure 7.5 can be drawn. In equation 7.10 and in
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7.2

1 i T,
— eyl g, n oy
Ra
k, [€&—o, B, [€«—o,

Figure 7.5:Block diagram for the DC-motor

figure 7.5,k. and By are unknown constant$3y is found in an experiment. This experiment is
described in appendix A on page 111. Besides linear friction, the motor is considered without loss.
This means that the electrical power equals the mechanical power. This assumption is expressed
as follows:

Ug*lag =Tm " Wm (7.12)
Equation 7.12 can be written as:
Ke * Wm s = KT+ s W (7.13)
U
ke = KT (7.14)

The last result in equation 7.14 shows that under the assumption no loss, the copsigntds
kt. kt is given in the datasheet [CQDatablade&Johnson_HC683G.pdf]. Below all constants is
shown in table 7.2.

Constant‘ Value
kr 3.9170- 1073 Nm/A
ke 3.9170- 1073 Nm/A
R, 0.134002
Bt 18.288 - 10~3 Nms/rad
n 34

Table 7.2: Motor constants used in the model seen in figure ??

Servo

The SSC-controller, which will be controlling both the DC-motor and the servos for steering,
accepts an 8-bit signal indicating the position of the servo as mentioned earlier. The position of
the servo results in a steering angle for the wheel pair in question. The relationship between the
angle and the 8-bit signal will be determined here.

Measurements of the steering angle of the front wheel pair as a function of the 8-bit signal
was performed. The results are seen in table 7.3. Assuming linearity, the model reduces to a
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8-bit signal | Steering angle [rad/s]

89
127
168

oy O @L

Table 7.3: Measurements of the relationship between the 8-bit signal to the servo and the steering angle for the front
wheel pair.

adjustment factor and offset, which can be expressed as:
Nf = Y1Ks + A (7.15)

Where/N¢ denotes the 8-bit signal for the front sergpthe steering angle of the front wheel pair,
ks the adjustment factor antil the offset. Accordingly the model of the rear wheel pair is similar:

N, = yks + A (7.16)
Using the assumption of linearity, the adjustment fagtonas been calculated:
ks = =— (7.17)

and the offset is:
A =127 (7.18)

7.2. Servo 5 1



52 Chapter 7: DC-motor and Servo Model



8.1

CHAPTER 8

Odometry Model

In order to keep track of the posture of the robot over time, a odometry model is needed. As we
will see later, also the value gfandy; must be determined using the odometry model.

Using inputs from the encoders placed at the two rear wheels, the odometry model shall be
able to determine the posture of the robot at all times. The development and simulation of such a
model will be the subject of the following.

We will use indicesk and k — 1 to distinguish between the state of variables at the present
sampling instant#) and the previous sampling instant (), respectively. With this definition,
the principle of updating the odometry can be expressed as:

& =& 1+ DEx (8.1)
Where
Xk Xk—1 Ax
= | &= w1 |, Q&= Ay (8.2)
Ok Ok_1 AB

The odometry §) is maintained by summing up the change in posture for each time step. This
leaves the main objective of the odometry model to be able to deteréjne

In [Wang, 1988], a method for determining the change in posture of a two-wheeled robot
drive system using only the measurements from the wheels encoders is suggested. Using this
method, the posture of the middle point of the axle is described. The method can be expanded to
be used here, by using the rear wheel pair (wheel 2 and 3), if they are fixed in orientation with
respect to the robot frame. The method is ideal since the change in orierftéadideducted from
the encoder readings. If this wasn’t possible, the change in orientation would have been evaluated
using the steering angles This would have been a problem, since no measurement of the steering
angles are available. The only information available is the requested steering angle applied by the
controller, but this is not precise due to friction of the tires.

Deriving the Model

In the following the odometry model is derived. First the change in orientation is determined, and
afterwards the change in position is determined.
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8.1.1 The Change in Orientation

The wheel-pair in question (the rear one) consists of whidélsind /5. The axle mid-point

is calledG. Encoders are placed on both wheels, thereby making measurements of the distance
travelled by each wheel known. If both wheels are travelling the same distance, the problem of
deriving the change in orientatiohd and change in positioAx andAy are simple. In that case

there is no change in orientation, and the change in position is a matter of simple calculations. If
the travelled distance for the two wheels are not the same, the problem becomes a bit more com-
plex. Consider the situation illustrated in figure 8.1. The wheels are travelling different distances

Ady,

Figure 8.1:The two-wheel drive system. The mid-axle point is moving from G’ to G”, and the wheels 2 and 3 are
travelling the distances Ad» and A ds respectively.

Ad, and Ads resulting in a change in orientatiakd. For small angled\d, the distances can be
expressed as:
Ad, = RAO (8.3)

Ads = (R+ L)A6 (8.4)
The distance travelled by the poiftis found as the mean of the distandeg andAds:
_ Ady+ Ads

AD :
. (85)
since . ) )
AD = (R + 5) Af = E(QR + L)AS = E(Adg + Ads) (8.6)
The change in orientation is found by combining equations 8.3 and 8.4:
Ad; — Ad
Ads = RAO+ LAO = Ady + LAB = NG = % (8.7)

Thus, the change in orientation is found as the difference between the encoder measurements
divided by the distance between the wheélsSince the calculation of the change in orientation
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is based on the assumption that(Af) = A6, the model is only valid for small anglesd. It
is therefore a requirement for the model to be accurate that the sampling time is small enough to
ensure the assumption.

8.1.2 The Change in Position

Having established the change in orientatibf, the next step is to determine the change in po-
sition for the robot. For that purpose, the illustation in figure 8.2 is used. Atkimel the axle

Ax,

-t »
-t '

Figure 8.2: The geometrical problem for determining the new position and orientation of the wheel pair. At time
k — 1 the whedl pair is at position G' oriented towards A. The wheel pair moves along the arcG’'G” towards the point
G" attime k.

mid-point is at the pointG’ oriented towards the point A, thereby makifig; = ZAG'F. The
orientation at timek is given byf, 1 + Af,. The wheel pair takes a path fro@ to G” that has
total arc lengthA D, and a change in orientation A®,. Such a path is illustrated in figure 8.2 as
the arc betweet’ andG"”. The change in orientation for the wheels is equal to the aAG€’:

A0y = LABG" (8.8)

We seek the location of the wheel axle-midpoint at tikret locationG’. For this the anglé/G'F
and the lengthG'G”| must be determined. When they are determined, the positiéH cén be
calculated as:

G" = cos(LHG'F)|G'G"| (8.9)

The angleHG'F is found by inspecting the various angles. According to [Wang, 1988] it can be
shown that the lind8C, which is parallel to the lin€&g G”, bisects the angldBG". Thus:

A8
/ABC = /AG'H = Tk (8.10)
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With this knowledge, the following is also satisfied:

A
/HG'F = ZAG'F — ZAG'H = 0_1 + % (8.11)

The length|G’'G"| is unknown, since the encoder measurements represent the |angliG”|.
An expression for the relationship between the ledGt6” | and the lengtharcG’G”| is therefore
found in [Wang, 1988] under the assumption that the patfi &ftis circular:

IG'G"| 2 (5 + R)sin <A9k> sin <A9k>
= = 8.12
|larcG' G| (5 +R) A6k 28 (8.12)
That is, the lengtlc’ G” is:
sin <A§k>
|G'G"| = —g—ADy (8.13)

e
since|aroG’'G"| = ADy. Inserting equations 8.13 and 8.11 into equation 8.9 then yields:

ADy
Sin > AB
Ax = %AD,( cos <9k L+ 2k> (8.14)
3
Ssin MA@
Ay = ET”AD,( sin <9k L+ —k> (8.15)
=" 2
(8.16)

Using this, regular expressions for the posture at tinb@sed on the posture at tikke- 1 are:

ABy
Sin > A6
Xk = X_1 + %AD;( cos (9k 1+ 7k> (8.17)
2
(16,
sin - . MO
Ve = Yk—1 + %AD/( sin <9k 1+ Tk> (818)
2
Ok = Ox_1 + Dby (8.19)
The factor
sin <A9k>
Nz (8.20)

A0,
2

introduces a problem. Fd6, = 0 the expressions fakix, andAy, in equations 8.14 and 8.15
are not defined. This means that straight motion is not supported, and this is not acceptable. As
seen in figure 8.3, it is a property of equation 8.20 that

lim rm(m)] =1 (8.21)

AG—0 %

This means, that for small anglég,, the factor will be negligible. Therefore the factor will be
disregarded in this project &6, = 0.
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Figure 8.3:Plot of the adjustment factor fromegquation 8.20 asa function of Aé;. It isseen that the function converges
to 1 as A6y gets closer to zero. Note that the function is not defined in A6, = 0.

8.1.3 Relationship between G and P

Having determined the change in posture for the pGinthe last step is to calculate the resulting
change in posture for the robot cenfer The situation is illustrated in figure 8.4. Denotizgas

W1

4
/

w2 "

o -

W3
Figure 8.4:The positions of the points G and P on the robot.
the odometry with respect to the poifitandé; with respect taG the following is true:

%cos@
€p=E+ | Lsing (8.22)
0
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8.2 Determining n and y; Using the Odometry Model

Having found expressions far, y, 6 and their derivatives, the final step is to determine expressions
for n, {1 and(,, since they must be known in order to able to implement the controllers designed
later. The variableg, ¢; and{, must be known at each sampling instant for use in feedbgads.

zero if the orientation of the wheels are fixed with respect to the robot frame. The vajueanf

be calculated, if the anghg is known for the present and previous sampling instant:

G = () — (M)k-1 (8.23)

since
=7 (8.24)

The expressions for these are found in appendix F.4, and therefore only the results are stated here:

X
_ 2
n £(— cosB cos(ag — 1) + cos 6 cosy; cos ap + sin @ siny; cosay) (8.25)
—£sinf — 6
= arctan{ . Zsm. (co§a1 . cosay) } (8.26)
y +4sinfsina10 — cosK

8.3 Simulations

To be able to verify the developed odometry model, simulations were performed. Encoder-
measurements were constructed "at hand”, since it wasn't possible to use simulated values from
the kinematic model. Plots were made to reveal the results. The constructed input from the en-
coders are chosen, so the trajectory of the robot will contain three types of motion:

e Straight motion with both wheels travelling the same distance.
e Turning motion, with only one wheel moving.
e Turning motion with both wheels moving.

The simulation is run for 1000 seconds. It is the intention to simulate the trajectory illustrated in
figure 8.5. The change in encoder measurements as a function of time has been found by simple

«1t=500

t=900 t=800

t=1000
End

Figure 8.5:The trajectory the robot will follow in the simulation.
calculations "in hand”, and are stated in table 8.1 and also shown in figure 8.6.

The corresponding outputs from the odometry model is seen in figure 8.7 (the position) and
in figure 8.8 (the orientation). The robot position is as expected, with the robot moving from the
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Time interval [s]‘ Direction W2 increment per sample [m] W3 increment per sample [m]

0-100 Right 0.00443 0
101-200 Straight 0.00443 0.00443
201-300 Right 0.00443 0
301-700 Left 0.00443 0.00886
701-800 Right 0.00443 0
801-900 Straight 0.00443 0.00443

901-1000 Left 0.00443 0

Table 8.1: The sample intervals, type of motion and increments in encoder values used to construct the inputs used
for the simulation of the odometry model.

Encoder W2

4 T
c
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§2r 1
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@
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S
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Time [s
Encoder W3

5 T \/
Eaf |
Zal ]
£
()
S52f 8
%]
&
=1r i

O Il Il Il Il Il

0 200 400 600 800 1000 1200
Time [s]

Figure 8.6: The inputs from the encoders used for the simulation. At the top the encoder measurements over time
fromwheel 2, and below the measurements from whee! 3.

starting point (the square) to the end point (the triangle) as indicated by the arrows. The orientation
is also as expected. Since the angle is restricted:
—nmr<o<T (8.27)

it sometimes changes from80° to 180°.

Summary

In this section an odometry model was derived taking inspiration from [Wang, 1988]. The model
describes the robot posture over time, using only the encoder measurements from the two rear
wheels. The model was simulated using constructed encoder-measurements, and the results were
as expected.
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Figure 8.7:The position of the point G as found by the odometry model. As expected the robot is moving along the
solid line as indicated by the arrows starting at the square and ending at the triangle.

Orientation
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Figure 8.8:The change of orientation during the simulations. Since the orientation is restricted to be in the interval
[—r; ] the angle on occasion changes from -180° to 180°.
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9.1

CHAPTER 9

Control by Feedback
Linearization

In this chapter the first of two control algorithms for trajectory tracking is designed. The control
design is based on feedback linearization. To reduce the complexity of the control problem, a
partial linearization of the dynamical model is performed in section 9.1. In section 9.2 the steps
of feedback linearization for a general system are described briefly. In the section 9.3 a change of
variables is performed on the nonlinear model for the robot, and the control laws are applied in
section 9.4.

Partial Linearization

The purpose of this section is to perform a linearization of the dynamical model to ease the design
of a controller. In chapter 4 a nonlinear state space model for the robot was found:

H(y)u
q

—f(y,u)+ F(y)T 9.1)
S(q)u 9.2)

Recapitulating thay is the vector of generalized coordinates defined as:
3
a=1 7 (9.3)
(
And v is the input vector to the kinematic model:

u=[Mn G & G Gl (9.4)

A common approach in the design for a controller to a nonholonomic wheeled robot is to perform
a partial linearization of the dynamics in equation 9.1 as described in e.g. [Oriolo, 1995], [Cham-
pion, 1996] and [Dimon, 2002]. The idea is to determinbased on a desired value for That
is, the output from a designed controller woulddbmstead ofr, hereby reducing the model to:

u = v (9.5)
¢ = S(qu (9.6)
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9.2

wherev are the accelerations determined by the controller. An expressiortfased on the value
of v can be found by rearranging equation 9.7 and substitutimgh v:

H(y)v = =f(y, u) + F(7)T (9.7)

T =F(y) (H(y)v + f(7,u)) (9.8)

wheret denotes a pseudo-inverse, sirfegy) isn't a square matrix. The change in the structure
of the control design is illustrated in figure 9.1.

Partial System

Linearization oo -

B) r v T u !
Controller }—»{ T:F+(’}/)(H(’}/)v+f(’}/=u))}—:—>{ Dynamics A Kinematics >

|

! [

-

C) r v, u
Controller

Figure 9.1:A) The control problem before partial linearization is applied. B) How partial linearization is applied.
C) The reduced system from the controllers point of view after having applied the partial linearization.

General Equations for Feedback Linearization

The equations presented in this section are not specific for the robot. The purpose is to clarify the

steps performed in section 9.3. Consider a general nonlinear system:

f(x)+G(x)v (9.9)
y = hx) (9.10)

with input v, system stateg and outputy. With feedback linearization the question is whether
there exists a control law:
v=08"Y2)w+ a(z) (9.112)

and a change of variables:
z=T(x) (9.12)

which together transforms the nonlinear system into an equivalent linear system:

z=Az+Bw (9.13)
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9.3

The linear system in equation 9.13 with inputcan be stabilized with a linear controller if the
system is controllable.

An important note. Once the change of variables in equation 9.12 has been performed on the
system, it is required that the system can be written in form:

z=Az+ BB(z) (v—a(z)) (9.14)

in order for the feedback linearization to be applicable [Khalil, 2002].

Change of Variables

A change of variables is performed on the system to obtain the structure of equation 9.14. Using
partial linearization and considering the posture kinematic model from section 5.4, the system
model is reduced to:

Upk = Vv (9.15)
C.ka = S(Clpk)upk (916)
As a consequence of the posture kinematic model the vedsreduced to:
v=[n & &7 (9.17)
Before a change of coordinates is applied, the system model is written into the same form as
equation 9.9:
' 0 1
x=| " 1|= + v (9.18)
dpk S(qpk)upk 0
With inspiration from [Micaelli, 1996] and [Dimon, 2002] a change of variables is introduced as:
_ RS
z=T(x) = ¢ (9.19)

Remembering thag describes the posture of the robot:
e=[x y 6 (9.20)

The choice is a result of the fact that we wish to minimize the error between a time-varying
trajectoryr(t):
r(t) = [&ref(t) éref(t)]Tv Vit (9.21)

and the system stat¢$ £]7. With equation 9.19 the control design takes the structure given in
figure 9.2:

With the known change of variables, the next step is to write the system in the form of equation
9.14 and thereby verifying that feedback linearization is applicable. The system written on the
form of equation 9.14 is found with use of equation 5.5 where an expressiisfgiven:

- 14

3
3

e . ¢
& () 2 (RT(O)Z(7)n)

+ Bs <i (RT(G)Z(fy)n)> (9.22)

= A
s dt
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Trajectory . .
Reference Linear Controller Linear System

i[i} l ) P H

K. —v=Pp2)'w+az)—> z=Az+BB@)(v—a(z))-> %

\J

Figure 9.2:The control law for v cancels the nonlinear termin the system. Thus making it possible to use a linear
controller, which drives the output equal to the reference r.

Where
l
A, = O3x3  I3x3 and B, — 033 (9.23)
O3x3 O3x3 I3x3
Comparing 9.14 with 9.22 it becomes clear that:
d o7
B(2) (v —a(2)) = — (RT(O)(7)n) (9.24)

Hence for the two terme(z) andB(z) to be found, the ternf; (R7 (6)X(y)n) must be calcu-
lated:

% (RT(O)Z(7)n) = RT(O)Z(v)n+ RT(8) (Z(7)n + =(7)n) (9.25)

The first term on the right hand side of equation 9.25 is independentaofl therefore contains

a. The remaining two terms in the bracket on the right hand side of equation 9.25 must be the
product of3 andv. v is found in the first term in the bracket in the form%f The other two
elementg; and(, in the vectorv should therefore be found in the second term in the bracket of
equation 9.25. Remembering that= (, expressions fot(z) and((z) is found:

—B(2)a(z) =RT(B)Z()n (9.26)
B(z)v  =RT(6) (Z(v)n+(v)n)
= RT(6)B1(2)v (9.27)
y
a(z)  =-BH2)RT(O)Z(7)n (9.28)
B(z2) =R (0)B1(z), for v=v (9.29)
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Where:

Bi(z) =
[ ficos(y2)cos(ar — 1) (hcos(ya)sin(ar —71) (= hsin(y2)cos(ar — 1)
—hcos(y1)cos(—az +72)  hsin(y1)cos(—az +72))n  hcos(yi)sin(—az +v2))n

hsin(yz2)cos(ar — 1) (hsin(y2)sin(ay — 1) (hcos(y2)cos(ar — )
—hsin(y1)cos(—az +72)  —hcos(y1)cos(—az +¥2))n  hsin(y1)sin(—oz +¥2))n

sin(y1 —72) cos(y1 —72)n —cos(y1 —Y2)n |
(9.30)

and v="[1 ¢ Gl (9.31)

As seen from equation 9.29 a problem occurs sinee[n ¢; (] andv =[n ¢ ()7 isnt
equal. In other words the inputto the model in equation 9.7 isn’t equal to the ingudiven from
a designed control law in the form of equation 9.11. This raises the following question: Can the
input v be determined front? If so, a control law forr can be found from the control law for.
The answer to the question is yes, sincean be determined by differentiation of last elements in
V.
With a(z) andB(z) as given in equation 9.28 and 9.29, the system can be written in the form

of equation 9.14, which was the requirement for the use of feedback linearization.

9.4 Control Law

The next step is to apply the control law that cancels out the nonlinear terms in system. The control
law is:

v=0_812)w+ a(z) (9.32)

wherew is the new input to the linear system. With this control law the system reduces to an
equivalent controllable linear system:

Z=Asz+ Bsw (9.33)
The fact that equation 9.33 is controllable can be seen from the controllability nfatrix
9= [Bs AsBs... A" B] (9.34)

where n = 6 is theorder of the system in equation 9.33. For the system to be controlfafrast
have full rank:

rank(9%) = n. (9.35)

Calculating® in MATLAB with the functionct r b( As; Bs) shows thatank(®¥) = 6 and hence
the system is controllable.
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9.5

Equation 9.33 is a linear state space model. Such a system can be stabilized with a full state
feedback control law [Emami-Naeini, 1994]:

w=K.z (9.36)

K. is a3 x 6 matrix of gain constants. The values of the gains are calculated on the basis of
the system-matricegs, Bs and on the choice of pole placement with the MATLAB function
pl ace() . With the functionpl ace() the placement of the poles is free of choice. Though it is
important to remember that the gains grow as the poles are moved further away from Origo. Large
gains may cause the motors to saturate. The pole placement issue is treated in section 9.5.

The last step in the control design is the introduction of the referente avoid a steady-state
error in the system, the reference should be introduced as given in equation 9.37 [Emami-Naeini,
1994]:

w=—Kcz+ (N, + KcNy)r (9.37)

The gain matriced/, and N, are found from their relation to the system-matrices:

As B Ny 0
s e = (9.38)
Cs 0 N, /
I
Ny = C51
° (9.39)
N, = —B;1ACS1
I
Ny =1
06 (9.40)
Ny = 03x6
Hence reducing equation 9.37 to:
w= Kc(r—2z) (9.41)
Inserting equation 9.41 in equation 9.32 and the control law becomes:
v=0B"Y2)Kc(r —2) +a(z) (9.42)

Pole Placement

Various combinations for the placement of the poles were tested in a MATLAB simulation. An
important observation was that in the resulting makfix gains and zeros were always placed on

the same positions, independent of the choice of pole placement. The positions of gains and zeros
in K. is shown in equation 9.43:

ki1 O 0 kg O 0
K. = 0 ko 0 0 ks O (9.43)
0 0 k33 0 0 k36
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9.6

Considering equation 9.41 is becomes clear that the gains in the first three coluiindedér-
mines the influence of the feedback of the error in the posture- £ since:

w=Kc(r—z)=Kc= (9.44)

Erer — € ]
Erer — €
The last three columns determines the influence of the derivative of the error in the posture. Be-
cause the goal is to minimize the error of the posture and not the derivative, the gains in the first
three columns must be dominant. With this observation a different approach was used to deter-
mine the placement of the poles. The the gaingjinvas chosen without consideration to the
poles. Appropriate values for the gains was found by trial and error in a MATLAB simulation. An
inverse calculation from gains to poles was then performed to ensure that the poles were stable.
Appropriate values for the gains was found to be:

005 0 0 0.001 0 0
Ke = 0 005 O 0 0.001 0 (9.45)
0 0 0.05 0 0 0.001

To check and see if these gains result in stable poles a reversed calculation was made:

P. = eig(As — BsK¢) (9.46)
[ —0.0005 + 0.2236/ |
—0.0005 — 0.2236i
—0.0005 + 0.2236i
_ | —0.0005-02236i (©.47)
—0.0005 + 0.2236i
—0.0005 — 0.2236i
—0.0005 + 0.2236i

| —0.0005 — 0.2236i

Since all poles are in the left half side of the complex plane the poles are stable.

Simulation

To verify the control design a simulation was made in MATLAB. The trajectdmy) used in the
simulation was defined as:

H(t) =[t, t %, 1, 1, 0]; (9.48)

The constraints on the angle of the wheels wasn't considered in the control design. So, to ensure
that the controller behaved as desired, no constraints was applied to the angle of the wheels in the
first simulations. It was found that with the designed controller, the robot was able to follow a
trajectory, if the steering angles in the front and rear isn't equafitaad. In the occurrence of

such a situation, a singularity is experienced in the kinematic model, causing the robot to stand
still in the simulation, see figure 9.4. The singularity is more precisely found in the VE¢tor
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Trajectory

Figure 9.3: The robot starts from a position in
(—2,0) and with orientation 7 rad. From here the
robot converges to and follows the trajectory as de-

Trajectory
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Figure 9.4: The robot starts from a position in
(—2,0) and with orientation 0 rad. Thisis a situa-
tion where the model fails because the front and rear

sired. steering angles are 5 and hence a singularity is expe-
rienced.

which becomes zero when = v, = £75. Hence the change in the postgreecomes zero:

: ™
E=RT(OZ(Mn=0 fory=m==7

A solution to the problem of the singularity will not be pursued. The reason this being, that the
occurrence of the singularity is an impossibility in real life due to the constraints on the steering
angles. However, introducing the constraints in the simulation doesn’'t come without complica-
tions. A situation with the same starting conditions as in figure 9.4, but with constraints is shown
in figure 9.5. Here it becomes clear that the constraints can force the robot into a state where it is

(9.49)

Trajectory Trajectory

E - E >
> >
l’ 1,
O’ < O, b
= 0 1 3 4 5 = 0 1 2 3 4 5
x [m] X [m]

Figure 9.5:Same situation asin figure 9.4, but with
constraints on the wheels. Because of the constraints
the robot doesn’'t experience any singularities but is

Figure 9.6: A solution to the constraint problem.
The front wheels are controlled and the rear wheels
are locked.

still unable to follow the trajectory.

unable to change its orientation. The controller wishes to steer the front wheels in a larger angle
than the rear wheels. But because of the constraints, the angle of the front and rear wheels becomes
the same, and thereby causing the somewhat lateral movement pictured in figure 9.5. Simulations
shows that the controller works fine once the orientation of the robot is aligned with the trajectory.
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9.7

9.7.1

Or in other words, the problem is to ensure the right orientation of the robot without ending up in
a situation where the steering angle of both front and rear wheels are in max. or min. One way to
avoid such a situation is to lock the rear wheels and only control the front wheels. A simulation of
this solution is shown in figure 9.6. Once the orientation is aligned with the trajectory, the control
of the rear wheels can be reapplied. This kind of solution is a hybrid controller with two states.
The design of a hybrid controller is therefore the subject of the following section.

Hybrid Control

In this section a hybrid automaton is derived. The definition for a hybrid automaton is found
in appendix B. What the purpose of the hybrid automaton really comes down to, is a directed
graph which shows, how the hybrid controller finds and tracks the trajectory. The derived hybrid
automaton is therefore simplified in the sense that some of the elements of the seven tuple is
described instead of defined mathematically. This is done to keep focus on the problem at hand
rather than deriving mathematically correct definitions.

The continuous dynamics of the hybrid automaton is considered as the posture of the robot over
time £(t) as described in appendix B. In the followig¢t) will be denoted ag for simplicity.
The differential equations describing the evolvement @ equal to the closed loop controller
for the robot. The controller in the close loop will change depending on the state of the hybrid
automaton.

Finding the States

The tasks of the hybrid automaton can be divided in two. One is to bring the robot close to the
trajectory, and the other is to track the trajectory once close to it. Close to the trajectory is defined
as an error between the posture of the robot and any given posture on the trajectory which is less
than a threshola:

A>[€ — Ererl (9.50)

whereA = [A, A, Ag]”. When the robot is close to the trajectory the front and rear wheels are
controlled as originally intended. Meaning that the change of steering angles for the wheels are
given asy; = (1,1 = {» where(; and(s is determined from equation 9.42. This is implemented
in the hybrid automaton as a stdte

To bring the robot close to the trajectory several approaches to the control of the wheels were
available. The problem to be solved here, is to avoid situations, where the front and rear wheels
end up in the same angle and is unable to align the orientation of the robot with the trajectory.
This problem was illustrated in figure 9.5. However, solutions involving design of new controllers
are undesirable. The reason for this being that a new control design is time consuming. Instead a
solution based on the existing control design is seeked.

One way to solve the problem is to lock the rear wheels and control the front wheets (
(1,72 = 0) asitwasiillustrated in figure 9.6. Another is to use the same control signal for the front
and rear wheels but with opposite sign & (1, v> = —(1) thereby giving the robot the ability
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Figure 9.7: Contral is only applied to the front Figure 9.8:Control isapplied to both front and rear
wheels and the rear wheels are locked. wheels. The rear wheels are controlled with the same
signal as the front wheels but with opposite sign.

to make sharper turns, see figure 9.8. Based on results from simulations it was chosen to use the
latter solution. In the hybrid automaton this solution is implemented as ajstate

Though the performance in the ability to move close to trajectory is increased with thg, state
situations may still occur, where the robot is unable to align the orientation of the robot with the
trajectory. Situations where the robot isn't aligned can occur if the error in orient@tiof ¢
is greater tharj;. Here the robot may end up in a situation where the orientation of the robot is
perpendicular to the point where it should converge towards. From here the robot is unable to de-
termine, if it should move back or forth and the velocitypecomes zero. The problem is perhaps
best illustrated, when the robot tries to converge to a static posture, see figure 9.9 and 9.10. Figure

Trajectory
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Figure 9.9: From its starting posture in ¢ = Figure 9.10: As the orientation of the robot be-
(2.0, 7) therobot triesto reach the posture (0, 0, 7). comes perpendicular to the reference point, the value

of n becomes zero.

9.9 is actually a good example of why a different controller is needed for posture stabilization.
The problem in trajectory tracking arises, if the orientation of the robot is perpendicular to the ref-
erence pointx..r, Yrer ), and the trajectory evolves in such a way that this situations remains. For
a feasible trajectory, this situation can be detected by examination of the error in the orientation
0 — 6,.¢. If a feasible trajectory evolves in a way, where the orientation of a robot remains perpen-
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9.7.2

dicular to the reference poik.cr, yrer) thenf — 6, must be+7. A solution to the problem is
found by forcing a constant value fgron the system, if — 6..r is greater than a threshold. The
threshold is set te-7. The reason why the threshold isn't closettt} is because the robot slows
down as it reaches 7 which is undesirable. With this solution the task of bringing the robot close
to the trajectory is divided into two statés and /3. The difference between the two states being
thatn is a constant in the stat8.

The Directed Graph

The transition between the states in the hybrid automaton is made on the basis of the thkeshold
and the error in the orientatioh— 6,.r which therefore are used in the invariant equations and

as guards. A simplified directed graph for the hybrid automaton is shown in figure 9.11. In the
directed graph the differential equation for the evolvemerg(of isn’t presented. To keep focus,

only the change in the controller for each state is presented. With the hybrid automaton the robot

Figure 9.11Directed graph for the hybrid automaton.

is able to move close to and follow the trajectory from any given start orientation. In figure 9.12,
9.13, 9.14 and 9.15 examples are shown where the robot moves close to and follows a trajectory.
The robot has the same starting position (0,2) in the four figures, but different orientations. The
performance of the controller with a more challenging trajectory is seen in figure 9.16, where the
trajectory is a sinus-curve defined as:

r(t) = [t sin(t) + 4, —cos(t), 1, —cos(t), —sin(t)]" (9.51)
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Figure 9.16:Fromthe starting posture ¢ = (0, 0, 0) the robot moves to the sinus-shaped trajectory and tracksit.
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CHAPTER 10

Passivity-Based Control

In this chapter a passivity-based controller to trajectory tracking is designed. The performance
of a passivity-based controller to this kind of application is of interest since it has, to the authors

knowledge, only been examined to a limited extend. The passivity-based controller designed in
this chapter is furthermore of interest, because it offers an alternative to the partial linearization of
the dynamics, which was described in section 9.1. In section 10.1 the dynamics of the system is
rewritten, so that passivity-based control (PBC) can be applied. A controller for the dynamics is

derived in section 10.2 and a controller for the kinematics is derived in section 10.3.

10.1 Rewriting the dynamics

The dynamics of an Euler-Lagrange system can be expressed as [Nijmeijer, 1998]:
D(q)d+C(q.d)g+9(q) =T (10.1)

D(q) is a symmetric inertia matrix. g(q) accounts for gravity forces @d, ¢)q is centrifugal or
Coriolis forces. In chapter 4 the dynamics of the robot was modeled as an Euler-Lagrange system.
Hence the dynamics of the robot can through suitable factorization be expressed as equation 10.1.
This is desirable because systems in the form of 10.1 can be controlled to follow a trajectory
through passivity-based control as described in e.g. [Nijmeijer, 1998] and [Khalil, 2002]. Writing
the dynamics in the form of equation 10.1 is therefore the subject of this section.

The symmetric inertia matri®(q) was found in section 6.3. From [Oriolo, 1995] it is known
that the dynamics of a WMR can be written as:

D(q)d+ n(q.d) = AX+Q(a)T (10.2)

Wheren(q, qg) is:

(3 (qTD(cnq)) (10.3)

(6.9 = D(@d -5 (5

2

In fact equation 10.2 is the same as 6.2. To recapitulate D(q) is a matrix of inertia. D(q) is
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symmetric positive definite and is given as:

i 0 0 0 1
[RT(6)MR(8)] 0 0 0 0 03x4
shw shw 3w 2w
00 3w w0 0 0
00 3w fw 0 0 0
Di@)=| 0 0 Liy 0 Ly o e
00 Iy 0 0 i
w0 0
1
04x3 O4x4 8 §gW 1, 8
i 0 0 0 ilw

(10.4)
A is the transpose of the constraint mathix\ are Lagrangian multipliers an@(g) is a matrix
that maps the inputs into forces/torques performing work @an Q(q) is defined as:

Q(q) = [ Do ] (10.5)
lgxs

To remove the Lagrangian multipliers from equation 10.2, the property of the constraint matrix is
used. From equation G.9 it is known that:

Ag =0 (10.6)
U
ATg=0 (20.7)
Substitutingg with the kinematic equation:
g=S(q)u (10.8)
yields:
ATS(Qu=0, Yu (10.9)
U
ATS(q) =0 (10.10)
U
ST(g)A=0 (10.11)

From equation 10.11 it is clear that the Lagrangian multipliers in equation 10.2 can be removed
by multiplication ofS™(q):
ST(@) [D(q)§ + n(q. §)] = 7 (10.12)

where
7=ST(9)Q(a)T (10.13)
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Equation 10.12 resembles the desired form of equation 10.1, but a problem remains. The dimen-
sion of the input must be equal to the dimension of the output before PBC can be applied. The
dimensions of the matrices and vectors in equation 10.12 are listed in table 10.1. Since the input

Vector/Matrix q S5(q) D(q) Q(q) T u T

Dimension 11x1 11x5 11x11 11x8 8x1 5x1 5x1

Table 10.1: Dimensions for vectors and matricesin equation 10.12.

7 is a5 x 1 vector and the outpug is a1l x 1 vector PBC cannot be applied. Inspired by the
approach in [Sagatun, 1991] the vectgrand is substituted witl§(q)u andS(q)u + S(q)u as
given from equation 10.8. This results in the following system equation with m@urtd output

u [Oriolo, 1995]:

D*(q)u—m(q,u) =7 (10.14)

With:
D*(q) = ST(q)D(q)S(q) (10.15)
m(q,u) = ST(q)D(q)S(q)u+ ST (q)n(q.S(q)u) (10.16)

The matrixD in equation?? was a symmetric positive definite matrix and hence so shbt(d)
be. ThatD*(q) actually is symmetric positive definite can be seen from the following. A sym-
metric positive matrix likeD can be written as:

D=RTR (10.17)

where R is a upper triangular matrix with positive diagonal entries [Lay, 1997]. Substituting
equation 10.17 in equation 10.15 yields:

D*(q) = ST(q)RTRS(q) (10.18)

D*(q) = (RS(q))" (RS(q)) (10.19)

Hence the matriXD*(q) is positive definite.

Since the input and the output of the system in equation 10.14 has the same dimension and is
of the form of equation 10.1, a passivity-based controller can be applied. It is however important
to note that the output has changed fromo v, hereby dividing the control design into a controller
for the dynamics and a controller for the kinematics. Or in other words, if a trajectory controller
is applied to equation 10.14 only the dynamics of the system is controlled as illustrated in figure
10.1. The design of a controller to the dynamics is the subject of the following section and the
design of a controller to the kinematics is found in section 10.3.
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Figure 10.1:The control structure for the dynamics of the robot.

10.2 Controller Dynamics

The control design in this section is based on [Khalil, 2002]. We wish to track a time varying
referenceu,. To ease the control design the referencwill for now be assumed to be constant.
Once the control design is completed, the performance of the controller will be tested against a
time-varying reference. The reference is tracked if the error ved®minimized:

e=u—u (10.20)

where:
u=In G & G G (10.21)
ur = [Nrer Cirer Corer  Caref C4ref]T (10.22)

Sinceu, is assumed to be constant, the derivative ofin be substituted wit in equation 10.14,
and hence satisfying the equation:

D*(q)é — m(q,u) =17 (10.23)
The goal is to stabilize the system(at= 0, ¢ = 0). Let the inputr be given as:
T=-m(q,u) — Kpe+v (10.24)

v is a new input to the system aid is a positive definite symmetric matrix. Substituting equation
10.24 in equation 10.23 leeds to:

D*(q)é — m(q,u) = —m(q,u) — Kpe +v (10.25)

D*(q)é+ Kpe=v (10.26)

Introducing the storage functidr as:

1

vV = 5eTer (10.27)
4

V =¢é¢"Kye (10.28)
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From equation 10.26 an expression &K, e is found as:

D*(q)é + Kpe = v (10.29)
4

Kp,e=v —D*(q)é (10.30)
4

e"Ky,e=¢éTv—eé  D*(q)eé (10.31)

Inserting equation 10.31 in equation 10.28 yields:
V=elv—e'D*(q)e<eélv (10.32)

Thus the system with input and outputé is passive with/ as storage function. If the system is
zero-state observable it can be globally stabilized by the contrel-¢(¢é). ¢(¢é) is any function
that satisfies:

p(0) = 0 (10.33)
eTp(e) > 0, Ve (10.34)
One choice forg(é) is v = —Kyé where K, is a positive definite symmetric matrix [Khalil,

2002]. A control control law for the dynamics is therefore:

T=-m(q,u)— Kye — Kgé (10.35)

7= (ST(0)Q(q)" (=m(q, u) — Kpe — Ky&) (10.36)

where 1 denotes a pseudo-inverse. Equation 10.36 is actually an alternative to the partial lin-
earization described in section 9.1. This solution is however considered to be more robust towards
disturbances and modeling errors in the dynamics. The reason for this being that the partial lin-
earization can be considered as an open loop controller which is entirely dependent on the model.
The control law in equation 10.36 is a closed loop controller and should therefore be more robust
towards disturbances and modeling errors. A requirement for the PBC solution is that the states

¢; and{, are measurable.

Through simulations appropriate values for the matriggs<; was found to be:

5 0 0 0 0
0 0.01 0

K, = |0 0 001 0 0 (10.37)
0O 0 0 00l 0
0 0 0 0 001 ]

Ky = 0.003- lsys (10.38)
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10.3 Controller Kinematics

The controller for the kinematics must track the time-varying referefice

r(t) = [Erer(t)  Erer(t)] (10.39)

Since the goal is to control the posture of the robot, the kinematic model of interest is again the
posture kinematic model from section 5.4. Before PBC can be applied to the posture kinematic
model, a change of coordinates= T (qy ) iS necessary for two reasons. One is that the input and

the output for the system must have the same dimension. The other reason is that a reference for
the outputy in equation 5.19 cannot be found directly frofit). The same change of coordinates

as in section 9.3 is applied resulting in the system:

z=Az+ BB(z) (v — a(2)) (10.40)

wherez = [¢ €]7. The transformation of coordinates solves the second problem because a
reference for the output is found directly fromr(t). To solve the first problem with different
dimension for the input and output, equation 10.40 is written as:

z—Asz+ BsB(z)a(z) = BsB(z)v (10.41)

z—Asz+ BsB(z)a(z) = u (10.42)

whered = BsB(z)v is considered as a the input to the system. Recapitulating the dimension
of equation 10.41 in table 10.2. From table 10.2 and equation 10.42 it is seen that thé input

Vector/Matrix  z As B B(z) a(z) v

Dimension 6x1 6x6 6%x3 3x3 3x1 3x1

Table 10.2: Dimensions for vectors and matricesin equation 10.41.

and the outputz has the same dimension. If a passivity-based control lawifoan be found,
the inverse transformation back to= [n ¢ (5] is found in two steps. First is found as
V= (Bsﬁ(z))T u. Fromv =[n (1 (]’ the inputu to the kinematic model can be determined
by integration ofy.

Based on the same design procedure as used for the dynamics, a controller is designed for the
kinematics. Because the design procedure is the same as given in section 10.2, the description in
this section is less detailed. First an error vector is defined as:

€Kin=Z—1r (10.43)
A control law for ¢ is introduced as:

U= —Asz+ BsB(z)a(z) — Kpkinekin + v (10.44)
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Inserting equation 10.44 in equation 10.42 and substitutingth e¢;,:

éxin = —KpKin€Kin +V (10.45)
4
ek inKoKinekin = €kinV — ékinekin (10.46)
Consider the storage functid
V = %e},—nKpK,-neK,-,, (10.47)
2
V = & inKpkinekin (10.48)

Inserting equation 10.46 in equation 10.48 yields:
V=ekl v—el éxin<eékiv (10.49)

Hence the system with inpwt and outputé;, is passive with the storage functiéh A control
law for v is chosen ay = —Kykinékin Where K ki, is a positive definite symmetric matrix.
Transformingu back tov the control law becomes:

v = (BsB(2)) (—Asz + BsB(2)a(2) — Kpkinekin — Kakinbrin) (10.50)

wheret denotes a pseudo-inverse. With the kinematic controller the PBC-structure for the robot
is shown in figure 10.2:

Kinematics

» Dynamics

Kinematic
Controller

Dynamic
Controller

Figure 10.2:The structure for the passivity-based control design.

10.4 Determining Kpkin

According to the control design the requiremenkia;, was that it had to be a symmetric positive
definite matrix. In section 10.2 the equivalent matkjx was chosen as a diagonal matrix with
positive entries. The choice @f,x;, needs to be a little different. Let’s take a closer look at
equation 10.50:

v = (BsB(2)) (—Asz + BsB(2)a(2) — Kpkinekin — Kakinbkin) (10.51)
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where the matrices and vectors are given as:

g gref
ekin = Z—r= [ ¢ ] [ e ] , 6x1 (10.52)
B(z) = RT(0)Bi(2), 3x3 (10.53)
cosf sinf O
R() = —sinf cosf 0 (10.54)
0 0 1
(10.55)
Bi(z) =
[ hcos(y2)cos(ar — ) (hcos(va)sin(ar —v1) (= hsin(y2)cos(ar —71) |

hsin(y2)cos(ay — 1) (hsin(y2)sin(ar — 1)

sin(yy — v2) cos(y1 —Y2)n

03x3  /l3x3

As = and Bs =
’ [O3><3 O3><3] ’

03x3
I3x3

Calculating the pseudo-inverse in equation 10.51:

.l.
(B.B(2)) = ([ O3 ]5(z)>
I3%3

000 ]\
000
000
6(z)
0

B ()

00
= 0 0O
0 0O

—hcos(m1)cos(—az +72)  hsin(yi)cos(—az +72))n  hcos(yi)sin(—oo +¥2))n

(hcos(y2)cos(ar — 1)
—hsin(y1)cos(—ap +72) —hcos(y1)cos(—az +¥2))n  hsin(y1)sin(—aa +¥2))n

—cos(y1 —72)n

(10.56)

(10.57)

(10.58)

(10.59)

(10.60)

With equation 10.60 the control law for the kinematics in equation 10.51 can be reduced. The first

term on the right hand side of equation 10.51 is:

03x3 03x3

~(BsB(2)) Asz = [03x3 B71(2)] [
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The second term on the right hand side of equation 10.51 is:

(BsB(2))'BsB(z)a(z) = [03x3 B~H(2)] [gi; ] a(z) (10.62)
1 00

= 01 0 |a(z)=a(z) (10.63)
0 01

Hence equation 10.51 is reduced to:
v = (BsB(2)) (—Kpkintkin — Kakinkin) + a(2) (10.64)

The two matrices<,x;, and K4k, are open design parameters, but they must be symmetric
positive definite matrices. In equation 10.51 it is the t¢By3(z))" Kpkin€kin, Which contains
the feedback of the error in the postur€,;, is a6 x 6 matrix. From equation equation 10.60
it becomes clear that the gains in the first three rows gf;, are without influence on the system
because they are multiplied with zeros. Hence for the eg¢grto have influence the gains in
Kpokin must be placed in the last three rows. The influence ofgthecan be divided into the
influence ofé — &, and€ — &, as illustrated in figure 10.3 The appropriate values for gains

Gains which have no
influence on the system

Kin —||7 = 77 T+ 0T+~ 1~ 7 |
i |k41 ki k43::_k44 kys k46|

Gains which influence the Gains which influence the
feedback of the error in the feedback of the error in the
posture derivative of the posture

Figure 10.3: Because K,xi, is multiplied with (Bs3(z))", the gains in the first three rows of K,xi, is without
influence on the system. The influence of the feedback error in the posture (€ — £,.) isfound in the first three columns
and the derivative of the posture (€ — £,.f) in the last three rows.

in Kpkin are found through trial and error in simulation. Though they have no influence in the
simulation, gains are also placed in the first three rows are to Kggp symmetric and positive
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definite and consistent with the design. The makfix;, is defined as:

[0 0 0 04 0 1
0 0 0 04
0 0 0 0 04
Koxin = 10.65
pKin 04 0 0 0001 0O 0 ( )
0 04 0 0 0001 O
i 0 04 O 0 0.001

The gains in the matriXyx;n is placed in the same way &S, for the exact same reasons.
The matrixK xi, is defined as:

0 0 0 001 0 0 |
0 0 0 0 001 0
0 0 0 0 0 001
Koyin = 10.66
dKin 00l 0 0 000l O 0 ( )
0 001 O 0 0001 O
0 0 o001 0  0.00L

10.5 Simulation

To verify if the derived control laws are valid, simulations are made using MATLAB. First the
control law for the dynamics is tested. In the control design, it was assumed that the reference
was constant. An interesting thing to see in a simulation is therefore, if the controller will be
able to track a time varying reference. When the controller is implemented on the robot, the time
varying reference will be constant in between two samples. It is therefore the time needed for the
controller to reach a reference, which is crucial to the performance of the controller. In figure 10.4
and 10.5 the result of an applied step to the reference is shown. The two figures show that it takes

Change of (1

Change of n

0.8f

0.6}

0.4}

0.2}

Time [s] 4Time [s]

Figure 10.4:The controller for the dynamics tracks Figure 10.5:Thecontroller for the dynamics tracks
a step in the reference (the dashed line) for 7. a step in the reference for ¢;. The plot for ¢» isequal
to the one for ¢1 and is therefore not shown.

the controller under a second to find the reference. With a reference that changes for each sample
and a sampling frequency of 10 Hz, the controller may not be able to track the reference and cause
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instability. It is however important to note that with a feasible trajectory the refergncwill

change in smaller steps than the one applied in the simulation in figure 10.4 and 10.5. In reality
there is a limit to how fast the wheels can be turned. Hence the valugsmofst be subject to
constraints. The following assumption is made about the elements in

n —-0.6<n<0.6
u=1|<¢ |. where —-05<{; <05[rad/s] (10.67)
¢ —0.5< (> <0.5][rad/s]

These constraints are applieddQr in the following simulations. The constraints defines some
max. and min. values far,.r, but doesn’t constrain how fast it may change. Once the kinematics
is included in the simulation it will be easier to tell hays changes. For now it is assumed that
the controller for the dynamics is fast enough to track a time varying reference and then return to
the topic once the kinematics have been included.

In the following simulations both dynamics and kinematics are included. In the simulations
the time varying reference for the trajectory is again:

™
=t ¢t 2. 1 1 0 (10.68)

In the first simulation, no constraints were applied to the angle of the wheels. The result is shown

in figure 10.6. Two things can be concluded from this simulation. One is that the control design

Trajectory
5
4k |
3k |
E 2 1
>
1k |
1 | | | ; ;
-1 0 1 2 3 4 5

x [m]

Figure 10.6:Froma start position in (0,2) and orientation pi the robot moves to and tracks a trajectory.

works as intended, since the robot moves to and tracks the trajectory. The second is that the
controller for the dynamics doesn't cause instability. The change in the referercnd the
controlled v for the movement of the robot in figure 10.6 is shown in figure 10.7. The figure
clearly shows that the controller for the dynamics is able to track the reference in this situation,
sinceu andu,.r are close to identical. Based on the results from this simulation, it is concluded
that the controller for the dynamics is fast enough to track the time varying reference.

In the next step the constraints for the angle of the wheels were applied to the simulation.
Not surprisingly the simulations showed that the passivity-based controller experienced the same
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Figure 10.7:The figure shows how u and w..r changes. Only the first 30 sec. is shown in the figure because the
values remain constant here after. The solid lineis v and the dashed u;.r.

problems as control by feedback linearization. To summarize, the problems with the constraints
was related to the ability to orientate the robot with the trajectory. The angles for the front and rear
wheels both ended up in max. or min. which resulted in a lateral movement and thereby preventing
the robot from aligning the orientation with the trajectory.The problems are solved with the use
of the hybrid automaton derived in section 9.7. The directed graph for the hybrid automaton is
shown in figure 10.8. With the hybrid automaton, the robot is able to move close to and track

L3

n = const

h=gi
F=—Ci

Inv:

%4979,(,\

L1

Figure 10.8:Directed graph for the hybrid automaton.

a trajectory. Examples of this, where the robot starts from the same position but with different

orientations are shown in figure 10.9, 10.10, 10.11 and 10.12. With these results, it is concluded
that the controller works as intended. As with the control by feedback linearization a test of the

controller with the sinus-trajectory is shown in figure 10.13:
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Figure 10.12:The robot starts with an orientation

Figure 10.13:Starting from a position some distance from the trajectory the robot converges to the trajectory and

tracksit.

10.5. Simulation

87



88 Chapter 10: Passivity-Based Control



CHAPTER 1 1
Comparison of Controllers

Having designed two different controllers for trajectory tracking, it is interesting to compare their
performaces. If one compares the plotted simulations from section 9.7 with those in section 10.5
the plots look almost identical. From the plots nothing can be said as to which controller performs
better. This is perhaps not so surprising, if the control laws for the kinematics are compared. The
kinematic control law for control by feedback linearization and the control law for the passivity-
based controller are:

v o= B 2K(z—r)+alz) (11.1)
v = ((BsB(2)) (= Kpkinekin — Kakinbkin) + a(2) (11.2)

In section 10.4 it was found that only the three last row#(jr;, had influence on the feedback
of the errorek;, = (r — z). These three rows can be found as the matgixn equation 11.1. The
two terms:

B H(2)Ke(z—r) and (11.3)
—((BsB(2)) Kpkinexin (11.4)

are therefore the same.

With this observation the only difference between the two equations is the differential term
in equation 11.2. With the chosen value f&yx;,, the influence of that term becomes minimal
and the two equations are therefore almost identical. This is the reason why the plots for the two
controllers are so very similar.

To compare the performance of the two controllers it is necessary to look at the dynamics
where greater differences are found. found. In figure 11.1 and 11.2 the change of thegoutput
from the dynamics is shown for the two controllers. The output is generated from the simulations
where the robot tracks the sinus-shaped trajectory shown in figure 9.16 and 10.13. The difference
between the two controllers is best seen as the robot converges to the trajectory which is done in
first 50 sec. Here after the plots are close to identical. As the robot converges to the trajectory the
hybrid controller is in one of the two statésand /. In these state§, = —(; which is why only
(1 is considered in the figures. Comparing figure 11.1 and 11.2 it is observed that the @utput
for the passivity-based controller is smooth. A smooth changg is desirable since it results
in a smooth change in the angle of the wheel. The oufpfriom the partial linearization in the
controller using feedback linearization is less smooth. Heohanges quickly and in large steps.

If implented the servos would be worked unecessarily hard and use more power than with the
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Figure 11.1:ntheleft plot the output ¢; from the dynamics for the controller using feedback linearization is shown.
On the right the resulting steering angle for wheel 1.
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Figure 11.2:Same plots asin figure 11.2 for the passivity-based dynamics controller.

passivity-based controller. Furthermore the large changésfiom the partial lineariztion may

cause the controller to become unstable after implementation because the servos can'’t turn the
wheels fast enough. A problem which isn’t experienced in simulations because the servos isn’t

incluede in the model, and neither is the friction between the wheels and the surface. Hence the
passivity-based dynamics controller have a clear advantage over the partial linearization used in
the control by feedback linearization.

In section 10.2 it was argued that the passivity-based dynamics controller was more robust
towards modelling error and disturbances than the partial linearization. To verify this statement a
simulation where noise is applied to the dynamics is performed. The noise is applied as a random
factor betweent0.3 which is added to the output from the dynamicsThe resulting trajectory
is shown in figure 11.3 and 11.4. The figures shows that the passivity-based dynamics controller
is able to suppress the disturbances better than the partial linearization. In the figures this is seen
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Trajectory Trajectory

Figure 11.3: Resuiting trajectory for the control Figure 11.4:same situation asin figure 11.3 with
by feedback linearization when noise is added to the the passivity-based controller.
dynamics.

not only by the trajectory which is more smooth but also by the states. Once on the trajectory
the hybrid controller remains in the statdor the passivity-based controller while the control by
feedback linearization struggles to stay on the trajectory and remains in th¢. state

11.1 Summary

Two controllers for trajectory tracking have been designed. One based on feedback linearization
and the other on passivity-based control. The control problem was in both designs divided into
control of the dynamics and control of the kinematics. The control problems were approached in
different ways. The controller based on feedback linearization used partial linearization to reduce
the control problem to the kinematics. The other designed a controller separately for the dynamics
and the kinematics.

Though the controllers where designed separately and through different design methods, the
resulting two controllers for the kinematics turned out almost identical.

Better performance was observed by the passivity-based dynamical controller than with the
partial linearization when the robot converges to a trajectory. Simulations revealed that the output
from the passivity-based dynamical controller had a more smooth character, than the partial lin-
earization. The output from the partial linearization changed quickly and with large steps which
was undesirable since it puts strain on the servos and may cause instability. Furthermore the
passivity-based dynamical controller showed better performance when disturbances was added to
the dynamics of the system.

11.1. Summary 9 1
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CHAPTER 12

Implementation Framework

To be able to implement the designed controllers, a framework is needed for the onboard computer
on the robot. The framework will contain the controller, the odometry model, the pathgenerator
and the communication with the servos, encoders and DC-motor. Furthermore a speed-controller
for the DC-motor will be implemented here. The design and implementation of the framework
will be the subject of this chapter.

As mentioned earlier, it is the intention that the robot in future projects will be cooperating
with a number of other robots. To ensure that it will be possible to reuse the elements of this
project in future works, it is important that the code is well-structured and documented. This will
be ensured by splitting up the code in smaller modules, which are easier to get an overview of.

Inspiration for the design of the framework has been taken from [Lima, 1999] and [Taylor,
2002]. [Lima, 1999] suggests a "blackboard” for keeping shared variables. The blackboard can be
extended to be distributed on more than one robot, thus making it ideal for the future developments
of this project. [Taylor, 2002] introduces the idea of having multiple control modes available, an
idea which is suitable for this project.

The outline of the chapter is: First the requirements of the framework are listed, and the
choice of operating system is adressed. After the tasks to be performed has be determined, a
design consisting of several modules (containing the code for a specific task) is suggested. Some
more detailed implementation issues for each of the modules are placed in appendix D.

All the developed code are placed at [Clixt1\] along with a Makefile for easy compilation.

A users guide for the compilation and the (simple) user-interface can be found in appendix C.

12.1 Requirements

The requirements for the framework are to make implementations of the following possible:

e Controllers.
e Odometry model.
e Pathgenerator.

e DC-motor speed controller.

Apart from the implementation of the four mentioned above, a clock must also be implemented,
since the trajectories generated by the pathgenerator are time-dependent. Without a clock, it will
not be possible to determine when the reference for the controller has to be changed.
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Having the controller etc. implemented using the framework, a user-interface to e.g. start
and stop the execution is needed. In this user-interface a mode to steer the robot manually using
the keyboard is also implemented, and datalogging is made possible. The implemented user-
interface is called xt 1, and the source code is found in [CRxt1\txtl.c]. A users guide for
the user-interface is found in appendix C. For further documentation of the source code for the
user-interface the reader should refer to that file.

We define the main sampling frequency as the frequency the controller is executed with. The
odometry model is also updated with the main sampling frequency. The DC-motor speed con-
troller must be executed with a higher frequency than the controller. To guarantee this, it is a
requirement, that both the main sampling frequency and the frequency for the DC-motor speed
controller are fixed and known. The pathgenerator will be executed at startup, and then again
every time the trajectory end-point is reached. Thus the pathgenerator will not be executed with a
fixed frequency.

12.2 Choosing an Operating System

Based on prior experiences with both MS Windows and Linux it was decided by the project group
that Linux would be the best choice for the implementation on the robot. Linux is preferred since
it is Open Source and thereby makes software-development on the lowest levels of the operating
system much easier than on e.g. MS Windows. Furthermore the documentation and support for
Linux are extensive through various sources such as Internet sites and newsgroups.

As stated in the requirements to the framework, the main sampling frequency has to be constant
and known. It is a task for the operating system to ensure that certain processes can be scheduled
with a fixed frequency, but this feature is not supported by Linux nor MS Windows. In other words
Linux doesn’t support hard real-time implementations which is needed for this application.

A possible solution is to use the RTLinux kernel, and that solution has been chosen in this
project. The RTLinux kernel is described shortly in the following subsection.

12.2.1 About RTLinux

The RTLinux kernel is an extension to Linux that makes hard real-time applications feasible.
The RTLinux kernel accomplishes real-time performances by removing sources of unpredictabil-
ity (such as disk handling and execution of demanding processes). The RTLinux kernel can be
considered to be placed between the standard Linux kernel and the hardware. The standard Linux
kernel thereby sees the RTLinux kernel as the actual hardware. In the RTLinux kernel it is possible
to introduce and set priorities to each task, and correct timing for the processes can be achieved by
using the scheduling algorithms, priorities and setting the frequency of execution. The RTLinux
kernel assigns lowest priority to the standard Linux kernel, thereby only executing standard Linux
when no real-time applications needs to be executed [Divakaran, 2002]. The organization of the
Linux and RTLinux kernels and processes are illustrated in figure 12.1. Since RTLinux can be
somewhat a challenge to install, a detailed installation description applicable for the onboard com-
puter on the robot is offered in appendix E. In appendix D.1 there is a short description of the
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Figure 12.1:The coexistence of the Linux and RTLinux kernels and processes. The RTLinux kernel is running the
Linux kernel with the lowest priority thus ensuring real-time scheduling for the RTLinux process.

implementation of real-time threads.

12.3 Tasks

With basis in the requirements from section 12.1, the tasks to be accomplished by the framework
is elaborated in the following. Two threads are needed: One to execute the main loop containing
the controllers for trajectory tracking and one for the DC-motor speed controller. In the following,
we will call the thread with the controller for trajectory tracking the “main control thread” and the
thread with the DC-motor speed controller the “DC-motor control thread”. As mentioned earlier
the DC-motor control thread is run with a frequency higher than the main sampling frequency. In
the following, the tasks of each of the two threads will be described.

12.3.1 DC-Motor Control Thread

The task of the DC-motor control thread is to regulate the velocity of the DC-motor to a desired
reference value. The reference is accessible through a shared variable. The tasks of the thread are:

1. Retrieve encoder-values and the current reference velocity.
2. Calculate new control signal to be applied to the DC-motor.
3. Apply the control signal to the DC-motor.

4. Make encoder-values available for other modules.

The tasks for DC-motor control thread are illustrated in figure 12.2.
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Figure 12.2:The tasks to be performed by the DC-motor control thread.

12.3.2 Main Control Thread

As mentioned several time earlier, the posture of the robot must be known for the controller to
work. The posture is found by use of the odometry model, which uses the encoder values as input.
These has been retrieved from the encoders by the DC-motor control thread and are accessible for
the odometry model.

The reference for the robot is the next posture on the trajectory to be tracked. This reference
changes with time, since the trajectory is time-varying. Itis therefore necessary to have an internal
clock to keep track of time, and to compare the value of the internal clock to the value of the time
when the robot was supposed to arrive at the next posture in the trajectory. If the value of the
internal clock is higher than the expected arrival time for the next posture, the reference should be
changed to the next posture in the trajectory. Based on the odometry and the reference, a control
signal is calculated by the controller. Afterwards the signal is be applied to the servos and DC-
motor. In other words, the tasks to be performed to implement the controller and pathgenerator
are:

1. Update the estimation of the position using the odometry model.
2. Update the reference using the pathgenerator.

3. Calculate new control signal.

4. Apply control signals to the servos and the DC-motor.

5. Maintenance of the internal clock.

The tasks listed here are to be executed with a fixed frequency using the RTLinux scheduler, and
they are illustrated in figure 12.3.
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Figure 12.3:The tasks to be executed by the main control thread at each time-step. The execution is initiated by the
RTLinux scheduler to ensure a fixed frequency of execution.

12.4 Modules

To ensure well-structured sourcecode, the tasks can be classified according to the nature of the
task. The classification results in eight groups of tasks. Each of these seven groups of tasks will
be implemented in RTLinux as a kernel module, so from now on we will call them modules.

Bl ackboar d Since the modules needs to share various variables, an environment for shared
variables is also needed. We will call this environment the Blackboard.

Super vi sor To update the internal clock and generate and update trajectories a supervisor is
implemented.

Cont rol The implementation of the control algorithms and the criterions to choose between
them.

Qdonet ry The implementation of the odometry model.

Hardware Abstraction Layer (HAL) The hardware abstraction layer, which makes communica-
tion with the hardware possible. The only module which is dependent on the robot platform.

Pat hgen The pathgenerator.
For implementation issues two more modules are needed:

Mai n Schedules the execution of the other modules. Is executed by RTLinux with a fixed fre-
guency (the main sample frequency), and then in turn executes the functions of the other
modules. Also contains the DC-motor speed controller.

Funct i ons Various functions needed by the other modules, e.g. support for matrix operations.
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The modules will be implemented in C as kernel modules, as is standard procedure when de-
veloping kernel level applications for Linux. In appendix D.2 the modules are specified with
descriptions of the functions of each modules and the blackboard-variables maintained for each
module.

12.5 Summary

To be able to implement the controllers for trajectory tracking and the DC-motor speed controller,
an implementation framework for the onboard computer is needed. An implementation consisting
of eight kernel modules was suggested and implemented. The implementation was performed
using RTLinux, which is an extension to a standard Linux kernel, which allows hard real-time
applications. The implementation of the framework on the onboard computer was succesful, but
since none of the controllers were implemented, the framework was never tested fully.
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CHAPTER 13

Tests

As mentioned earlier, the project group encountered some practical problems during the project
period. Due to the problems, the original intention about implementing and testing both the con-
troller based in feddback linearization and the passivity-based controller wasn't satisfied. There-

fore no tests were performed on the controllers. The implementation model on the other hand was
implemented, and the test are documented in the following.

13.1 Odometry

To test the odometry, three tests were performed

1. Straight motion.
2. Turning motion.
3. Travelling along the boundary of a square.

The first test is a simple test, to check that the odometry is working properly when moving along
a straight line without turning. Although simple, the test will reveal if the measurements from
the encoders are accurate. The second test is about turning motion. The robot will be moved
in a curve, to check the orientation. As a final the test, the robot is moved along a two by two
meter square. That is, the starting and the ending point is the same. This is done to verify that the
odometry will reveal that the robot is returning to the starting point af travelling a distance.

13.1.1 How the Test were Carried Out

The tests were performed without the use of the DC-motor. Instead the robot was pulled by hand.

The robot was pulled the robot by hand, because it is difficult to steer the robot as indended using
the manual control mode.

13.1.2 Results

The result of the first test is seen in figure 13.1. As expeced the robot is moving along a almost
straight line from the starting to ending point, making the test succesful.

The result of the second test, where the robot is moved so the orientation clhges
illustrated in figure 13.2 and 13.3. The test reveals an inaccuracy of the odometry. As seen in
figure 13.2 the orientation according to the odometry is only app8%, which is5° wrong.
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Figure 13.1:The straight motion test. The robot was moved from (0, 0) to (2, 0) as indicated by the square and
triangle.
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Figure 13.2:The result of the second test, where the orientation of the robot is changed. The robot is moved from
(0, 0) to (2, —2), but as seen the odometry is inaccurate. According to the odometry the positionis (1.95, —2.18).

Since the calculations of the changes in positions is based on the change in orientation, the error
propagates to the position as seen in figure 13.2. The robot is moved from the @dintto
(2, —2). According to the odometry, the final position (i5.95, —2.18), meaning an error of 5
cm. in x and a significant error of 18 cm. iny.

One of the reasons to the error is found by inspecting the change in position in more detail.
The tests reveals that the encoder measurements from wheel 2 are inaccurate. The inaccuracies
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are seen in figure 13.4 and 13.5 as spikes. In figure 13.4 the spikes»arezat0.5, 1.0, 1.5

and in figure 13.5 they are at ~ 0.25, 0.75, 1.25, 1.75. The difference between the two

plots is the starting wheel angle of the wheel. A mark was made on the tire using chalk. In the
left plot, the mark was placed closest to the ground. In the plot at the right, the mark was placed
away from the ground. The starting angle of the wheel has been turned half a revolution from the
plot in figure 13.4 to the plot in figure 13.5. Since the circumference of the wheel is 0.5 m. the
plots thereby indicates, that something is wrong with the reflective wheel of the encoder on wheel
2. By inspecting the reflective wheel, it was revealed that some of the reflective and non-reflective
pattern was damaged. This caused the encoder to make a “wrong count” once in every revolution.
The final test is the “square-test”, where the robot is pulled along a two by two meter square. In the
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Figure 13.4: The position of the robot with the Figure 13.5: The position of the robot with the
chalk-mark on the tire closest to the ground. chalk-mark away from the ground.

corners of the square the robot is moved back and forth a number of times in order to get the right
change in orientation ¢f0°. With the inaccuracies found in the above, it wasn’t expected that the
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test would be succesful. And as seen i figure 13.6 this wasn't the case either. The odometry was
expected to reveal that the robot returned to the starting po(iit i) after covering the boundary
of the square. This is not fulfilled due to the error stated in the test of the orientation.
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Figure 13.6:Thefinal test, where the robot is moved along a two by two meter square. The robot was moved back
and forth a number of times in the corners in order to turn the robot 90°. The test fails, since the odometry doesn’t
show that the robot returns to its starting positionin (0, 0).

13.1.3 Summary

In this section the odometry for the robot was tested using three different tests. The tests revealed
that the implementation contains an error. The reflective wheel used with the encoder in wheel 2

is damaged, and therefore introduces an error to the odometry. At the time this is written, no new

reflective wheel is accessible to the project group. But it is expected that replacing the reflective

wheel will correct the errors and make the odometry work satisfactory.
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CHAPTER 14

Conclusion

With the intent to be part of a larger project for cooperative robots a wheeled mobile robot was to
be build. Previous to this project it was decided that the frame of the new robot was to be build on
a TXT1-Extreme Truck from Tamayia. The problem specification for the project was:

How can a Tamiya TXT-1 Xtreme Truck be modified in such a way that it is able to generate and
track a trajectory between two given points?

The problem specification was divided into four areas. These areas are hardware modifications
and design, modelling, control and delopment of an implementation framework.

Hardware Modification and Design

Problems posed in this are were design and implementation of an input interface to collect data
from sensors and an output interface to control of actuators. The sensors which was used to posi-
tion the robot was limited to two wheel encoders. The input interface was based on a PIC16F877
microcontroller which translated the raw signals from the encoders into a wheel angle. From the
microcontroller the wheel angle was sent to the onboard PC using the RS-232 standard. The out-
put interface consisted of a SSC serial controller and a speed controller. The SSC-serial controller
translated the control signal sent by RS-232 from the onboard PC to a puls width modulated signal.
The power of the puls width modulated signal to the motors for propulsion was amplified through
the speed-controller. The SSC serial controller and the speed controller were both perched.

Modelling

In the area modelling three models for the robot was derived: A kinematic-, a dynamic- and
a odometry model. The kinematic model was derived from the pure rolling without slipping-
constraint where as the dynamic model was derived through Lagrange equations. To satisfy the
rolling without slipping-constraint it was assumed that the wheels could be turned and controlled
independently in both the kinematic and dynamic model. From simulations in MATLAB it was
concluded that the kinematic and dynamic model behaved as intended.

In the derivation of the odometry model it was necessary to assume that the rear wheel pair
was locked. If this assumption wasn’t made it would be a requirement to know the steering angles
of the wheels. The measurements of the steering angles are however at this stage not possible on
the robot. The derived odometry model was verified in MATLAB.
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Control

Two controllers for trajectory tracking was designed. One controller was based on feedback lin-
earization and the other used passivity-based control. The control problem was in both controllers
divide into control of the kinematics and control of the dynamics. The controller based on feed-
back linearization used partial linearization to reduce the control problem to the kinematics of the
robot. The other designed a passivity-based controller separately for the kinematics and dynamics.
Simulations revealed that due to constraints on the steering angles, both controllers had problems
aligning the robot with the trajectory. The problems were overcome by introducing a three state
hybrid automaton.

The controllers were never tested on the robot because of hardware troubles in the odome-
try. Therefore the two controllers performance were compared based on result from simulations.
Though designed separately the control law for the kinematic ended up almost identical for the
two controllers. The comparison of performance was therefore limited to the dynamics. Better
performance was observed by the passivity-based controller for the dynamics when the robot con-
verged to the trajectory from some posture away from it. Here the control signals to the servos
changed smoothly. The partial linearization for the dynamics changed the control signals more
rapidly which causes greater strain on the servos than the passivity-based controller when imple-
mented. Furthermore the passivity-based controller for the dynamics was more robust towards
disturbances and modeling errors.

Implementation Framework

In the last area a software framework for the onboard PC was suggested. The framework was
implemented as 8 kernel modus. The implementation was performed using RT-linux.

Future Work

If the project was continued a natural starting point would be the establishment of correct odom-
etry positions. It would however be preferable if the determination of the position wasn't solely
depending on odometry, since odometry unavoidedly will become wrong as time passes. The
incooperation of other sensors for positioning could therefore be a topic for future work on the
robot. Once areliable position can be determined, design and test of controllers can be performed.
Future work for the control design could be expanded to incooperate posture stabilization, obsti-
cal detection and avoidance. Furthermore the design of a more advanced path planner would be
preferable.

It is the intention that the robot shall participate in a project concerning cooperative robots.
Another area for the future work is therefore the communication between the robots and the deter-
mination of the tasks for the robots to perform.
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APPENDIXA

Linear friction

The purpose of this appendix is to find a transfer function for the motors through an experiment. A
step is applied to the motors, and the angular velocity of one of the wheels is logged. Based on the
model for the motors in section 7.1, a more detailed model is derived here. This extended model
is given a step and the transfer function is tuned to fit the logged data from the motors. From the
fitted transfer function the constaBt- is found.

Only the speed of the motors can be measured due to the optical encoders placed near the
wheels. Unfortunately, speed) is not a part of the model derived in section 7.1 on page 47.
Based on figure 7.5 on page 50, an extension including the relationship between tg)oared(
speed at the wheels)f,) is needed.

Extended model

In figure 7.1 on page 47 the following relations are valid

T = Ikt (A.1)
B = BTUJm (A.Z)
Ttot = Tm — TB (A.3)

The torquer;,: results in an acceleration given by

__ Ttot
Jtot

whereJ;,: is the total moment of enertia in motors, gears, cardan shafts and wheels. Inserting and
rearranging yields:

Om (A.4)

WmJdtor = kTla — BTwm (A.5)

Using the result in equation A.5 the block diagram in figure A.1 can be drawn. This diagram is an
extension from the one in figure 7.5 on page 50. The following equation is the transfer function
for the motor without gear seen in figure A.1

H(s) = Wm _ kr
B Va B JiotRas + RaBT + krke

Adding the gear, SSC-controller and speed controller yields the following transfer function

(A.6)

_kr_

wW Kmn
T(s) =~ — B A7
( ) N;‘n JtotRa5+ RaBT+kae ( )

Equation A.7 is a first order system and this transfer function is used when applying the step.
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Figure A.1:Block diagram for the extended DC-motor model

A.2 Motor test

The test was performed without load, i.e. the wheels were not in contact with the ground at any
time. To be able to get at steady count from the wheel encoders, wheel 2 was fixed, while the other
wheels rotated freely. Only the values from the encoder at wheel 3 was used in the test.

The step applied to the motors had a amplitudéygf= 30, and the speed of wheel 3 was
logged. Figure A.2 shows the result of this test.
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Figure A.2:The step response for the DC-motors.

A.3 Simulation

A step was applied to the transfer function in equation A.7. The step had the ampifude30.
The transfer function was tuned to fit the logged data from the real motors. The step response
of the fitted transfer function is plotted as a smooth solid line in figure A.2. The fitted transfer
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function for the motor is written below:

W 2.24.1073
T(s) = N, 1.018-10735+2512-103 (A8)
From this equation the constant of linear frictiBn is calculated.
Br =18.288-10 3Nms/rad (A.9)

The result above is used in the model in section 7.1.

A.3. Simulation 1 13
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APPENDIX B

Hybrid Automaton

In this appendix general definitions for a hybrid automaton is presented. Depending on the used
litterature the definitions for a hybrid automaton varies. The definitions presented here is in accor-
dance with those given in [van der Schaft, 1999]. The definitions are explained with basis in the
control of the robot. It is important to note that the hybrid automaton derived in this appendix only
is intended as an example to aide in the understanding of the presented definitions.

A hybrid system consists of two subsystems which influence each other. The dynamics for one
subsystem evolve in continuous time and the other in accordance to a discrete event system. The
movement of the robot over tingt) is considered as the dynamics of the hybrid system, and the
discrete event system is considered as various states the robot carg (g mill be denoted ag
for simplicity. In the following sections definitions for the continuous subsystem and the discrete
event subsystem are given and afterwards put together as a hybrid automaton.

B.1 The Continuous Subsystem

The dynamics of the continuous subsystem is described by differential equations. Since the move-
ment of the robot over time is considered as the dynamics, the differential equations are given by
the control law for the robot in closed loop with the system. Let these differential equations be
denoted ag (¢,£, w) = 0, where¢ is the posture of the robots are some continuous external
variables, which may influence the systéitt, ¢, w) = 0, but evolves in accordance to a different
system. For the robat can be considered as the reference for the controller, which is equal to
the trajectoryr(t). ¢ belongs to a space denot&d which is a three-dimensional subspaceraf
Likewisew belongs to a space denotéd

B.2 The Discrete Subsystem

The discrete subsystem is described by the tripled, E). L is a finite set of stated, k, ..., /)

the robot can be ind is a finite set of symbol§a, b, ¢, d, ..) which serves as labels to a transition
between to states. A transition between two states is called an eifettintains a set of rules
for each event. A more precise definition ®mwill be given in section B.3. Lets assume that the
robot can be in one of the three following states:

Find Trajectory In this state the robot moves from a posture away from the trajectory to a posture
on the trajectory.
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Track Trajectory In this state the robot is close to or on the trajectory and continues to track it.
Posture Stabilization The robot is close to its end destination and is moving into its final posture.

A resulting state diagram for the robot with the definitions above is shown in figure B.1.

Find
Trajectory
d
a
b
I2 |3
Posture
Stabiliza-

e tion

Figure B.1: An example of a state diagram for a robot moving from one point to another. The system starts in the
state /; as indicated with the arrow fromthe black dot.

B.3 Defining the Hybrid Automaton

A hybrid automaton is defined by a seven tuple X, W, A, E, Inv, Act). The elementd., X,

W, andA are as previously described. The hybrid automaton combines the two subsystems. Each
state/; has its own set of differential equatiofig(¢, €, r) = 0. The continuous variablé will

then evolve according to the differential equations of the current state of the hybrid automaton.
Act assigns a sets of differential equatiofig¢, £, r) = 0 to the statd.

In a state£ may be limited to a subspace &f. Limits in a state are described by invariant
equations denoted binv in the hybrid automaton. A more mathematically notation ffiov is
therefore/nv(/) C X forall /in L. If the hybrid automaton is in the statéhen& € /nv(/;) must
be satisfied. 1€ reaches the boundary fénv(}), an event is triggered, making the automaton
switch into a state wher¢ € /nv(}) is satisfied. For the robot the invariant equations is defined
by some thresholds for the posture. E.g. an invariant equation for the stated be:

Inv(l) : Afina > 1€ — Ererl (B.1)

whereAr;n, is a threshold that determines an area around the final posture, where the posture
stabilization successfully can be applied.

Once a transition is forced on the hybrid automaton because of a violation of an invariant
equation, the hybrid automaton may have to make a choice between several events. This choice
is based on the last element in the seven tuple which.isE is a finite set of events. Each
event is subject to some rules defined by a five t@ple, Guard,, Jump;y,I'). The event is a
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transition between the two stated’ € L and has the label € A. Guard, is a subspace of X,
Guard;y C X. For an event to occf € Guardy must be satisfied. If e.g. the robot is forced out
of the state "Track Trajectory” the guards for the events with labahd ¢ decides the next state
for the hybrid automaton, (see figure B.1). A guard for the ewetuld be that the difference
between the reference and the posture must have exceeded a given thigsheld,,. Jumpy
describes a jump in the continuous state froo € which takes place in the transition frohto
I

A hybrid automaton can be illustrated through a so called directed graph. A directed graph for
the robot with the states described in section B.2 is seen in figure B.2.

Start l
Guard:
Anajecrwy ‘6 glé

Guard
Afmal > ‘é éref

Figure B.2:An example of a directed graph for a hybrid automaton. The figure shows how the definitions are placed
on the graph.

A event can occur in one of two ways. One is as mentioned previously that an invariant
equation is violated. This is called an internal event. The other way is an external event. An
external event is when the hybrid automaton is told to change state by another system. Such a
system could be a supervisor for the hybrid automaton. The system outside the hybrid automaton
addresses which event there is to take place through the matching:labdl Common for the
internal and the external events are that the guards to an event always must be satisfied.
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APPENDIX C

Users Guide for the
User-Interface

In this appendix a short users guide for the user interface is given. The guide should make the
reader able to compile and execute the user interface enclosed on the cdx{IL),

C.1 Getting Started: How To Compile

Compiling the code is simple, since there is a Makefile to take care of all the compiling and linking.
It is noted that the compiling will only work, if RTLinux is set up properly.

1. Copy the source-codes from the CD to a directory of your own choice.

2. Inthat directory, dorake

3. If everything went well, the modules and the user interface is now compiled. Lots of mes-
sages appears on the screen. Some of them are warnings - they don’t matter!

C.2 Using the User-Interface

Having compiled the code, the user-interface is available in the fitel. The interface is exe-
cuted by putting

$ . /txtl

With no parameters usage description is displayed on the screen. Several parameters applies. The
parameters are:

start Starts the execution of the kernel modules (downloads the ASCII-file and starts the con-
trollers).

stop Stops the kernel modules and thereby the controllers.
manual Starts the robot in manual mode. The robot is now controlled by the keyboard.
status Tells if the kernel modules are started or stopped.

reset Reset the status from above to 'stopped’. Used if the system has crashed, leaving the user
interface to think that it is running although this isn’t the case.
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help Displays detailed help with description of possible parameters.

When running in manual mode, the controls of the robot are as shown in figure C.1. Logging of

Increase thrust| Q
Decrease steering right/
increase steering left
Decrease thrust | A

@ Reset all to zero

Increase steering right/
decrease steering left

Exit

Figure C.1:The keyboard controls used for steering the robot when manual mode is activated.

data is also possible. Logging is activated applying the extra paraineteto eitherst art or

manual . Example:

$ ./txtl start |og

Executing this command will start logging of data as defined in the funationt e_| og in

nmai n. c and inr ead_| og. c.
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APPENDIX D

Real-time Threads and Module
Specifications

D.1 Using Real-time Threads in RTLinux

RTLinux code is implemented as Linux kernel modules as is standard when developing kernel
level applications for Linux. The difference between standard Linux kernel modules and RTLinux
kernel modules is the use of real-time threads. Standard Linux kernel modules doesn’t sup-
port such threads. Linux kernel modules must contain the two functiomg nodul e and

cl eanup_nodul e. These functions are invoked when the kernel modules is inserted and re-
moved from the kernel using thensnod andr rmod, respectively.i ni t _nodul e initializes

the module, and| eanup_nodul e deallocates any ressources used by the module. When de-
veloping RTLinux applicationsni t _nodul e is used to setup and start a real-time thread using
RTLinux functions. Incl eanup_nodul e the real-time thread is stopped and the ressources are
deallocated. The use of real-time threads in kernel modules are best illustrated by the reoccuring
"Hello World” example stated in table D.1. The thread is set uprint _nodul e using the func-

tion pt hread_cr eat e. The functionst art _routi ne is assigned to the thread, meaning
that this is the function, that will be run in the thread. The func8émrt r out i ne consists of

three parts: Initialization, main and deallocation. In the initialization part of the function, the pri-
ority of the thread is set to 1, and with the use of the funcfiohr ead_nake_peri odi ¢c_np

the RTLinux scheduler is told to execute the functigirar t _r out i ne (identified by the func-

tion pt hread_sel f () ) once every 500000000 nanoseconds. The thread main function is a
whi | e( 1) -loop. Every time the functiopt hr ead_wai t _np is executed, the execution of the
code is halted until the next time the scheduler executes the thread. And when the scheduler signals
the thread to execute, execution is restarted from the line after the fupdtionead_wai t _np.

The result is that the code in thhi | e( 1) -loop is only run once for every time the scheduler
signals the thread to run.

D.2 Module Specifications

In the following a description of each of the eight implemented modules is given. For more
detailed information (the definitions of the used datastructures and the prototypes of the functions
in C syntax) the reader is referred to thle-files in [CD, \txt1\].
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#i ncl ude <rtl. h>
#i ncl ude <tine. h>
#i ncl ude <pt hread. h>

pt hread_t thread;
void *start _routine(void *arg) {

/[* Thread initialization */

struct sched_param p;

p.sched_priority = 1;

pt hr ead_set schedparam (pt hread_sel f(), SCHED FI FO, &p);

pt hr ead_make_periodic_np (pthread_self(), gethrtine(), 500000000);

/* Thread loop. Is run for every sample */
while (1) {

pt hread_wait_np();

rtl_printf("Hello World!'\n");

/* Deal | ocation of thread */
return O;

int init_nodul e(void) {
return pthread create (& hread, NULL, start_routine, 0);

voi d cl eanup_nodul e(void) {
pt hread_cancel (thread);
pthread_join (thread, NULL);

TableD.1: Asimple Hello World-example using a real-time thread in RTLinux.
D.2.1 Blackboard
Specifications for the Blackboard-module are:
¢ Contain shared variables.
e Shared variables can lbeat orf| oat .
e Can read initializing settings from an ASClI-file.

To avoid typecasting of variables it is found neccesary to be able to contain variables of the types
i nt andf| oat . To be able to make changes to the setup without having to compile sourcecode,
the blackboard will be initialized with values from an ASCII-file callexlt 1. conf . Each vari-
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able is assigned a name and a value. By convention the names of the variables are written using a
dot-notation with the group first and the element of the group last:

group. el enent

Recommended groups aedonet ry,encoder,cont r ol andm sc (for miscellaneous vari-
ables). As an example tixevalue of theodonet r y will be calledodonet ry. x. Since no check

is performed on the variable names in the implementation, the choice of name is in fact free. The
naming conventions are only to be considered as recommendations.

The functions to be implemented i ackboar d can be seen in table D.2. The functions
bbSet | nt andbbSet Fl oat sets a variable on the blackboard. If the variable already exists,
the value is corrected to the new one. If the variable doesn’t exist a new is crbatedi nt Al |
lists all the variable names and values of the variables currently on the blackboard. This function is
intended for debugging purposes. The ASCII-file download that is use to initialize the blackboard

Function Name Description
bbGet I nt () Returns the value of a specified variable blackboard.
bbSet I nt () Sets the value of a specified variable on the blackboard.

bbCGet Fl oat () SimilartobbGet I nt ().

bbSet Fl oat () SimilartobbSet I nt ().

bbl nit () Initializes the blackboard.

bbDest roy() Dealloacted the blackboard.

bbPrint Al'l () Prints all names and values of the variables on the blackboard.

Table D.2: The functions to be implemented in the module bl ackboar d.

with variables, is implemented using another thread. This is done to ensure that the controllers
aren't started until all the variables has been downloadded from the ASCII file. For further details
the reader is refered to [CDacks/ashtxtl\main.c].

D.2.2 Supervisor

The supervisor, which is executed at every sample along with the main control loop, is resposible
for three things:

e Maintenance of the internal clock.
e Changing the reference of the controllers (the next posture to track) if necessary.
e Determine which controller to be used.

The internal clock is maintained by adding the time between each sample to at variable at each
sample. Having maintained the clock, the reference is changed if necessary. A change is necessary
if the arrival-time of the current reference is exceeded. When no more postures are in the trajectory
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and the robot is at the final posture, a new trajectory is determined. Which controller to use is also
determined by the supervisor using information from the blackboard. The choice is saved as an
integer in the blackboard variabtont r ol . i d. Each of the implemented control algorithms
therefore needs to have an id-number assigned.

The tasks are performed using the functempUpdat e() . This function uses the func-
tions in the other modules to complete the tasks. Furthermore the fundigmbkni t and
supDest r oy are implemented. The functions are listed in table D.3.

Function Name Description

supUpdat e() Performs the tasks of the supervisor.
supl nit() Initializes the supervisor. (If needed).
supDestroy() Dealloacted the supervisor. (If needed).

Table D.3: The functions to be implemented in the module super vi sor .

D.2.3 Control

The requirements of th€ont r ol module is to:

e Make several control algorithms available for use.

e Choose the appropriate control algorithm based on specific criterions.

e Retrieve the current posture and change in posture from the blackboard.
e Calculate new control signals.

e Store the control signals on the blackboard.

Three functions are implemented@ont r ol . The functions are listed in table D.dt r | Updat e
is the actual implementation of the control algorithm. The function calculates and stores the new
control signals on the blackboard. The functioinr | Updat e() both chooses the correct con-

Function Description

ctrl Updat e() Calculates new control signals and stores them on the blackboard.
ctrlilnit() For controller initialization. (If needed).
ctrl Destroy() Deallocation of the controller. (If needed).

Table D.4: The functionsimplemented in the module Cont r ol .

trol algorithm and calculates the new control signals using the chosen control algorithm. The
choice of control algorithm is based on criterions similar to guards in a hybrid automaton. The
blackboard variables to be maintained by @t r ol module are shown in table D.5.
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Name Type Description

control .thrust float The requested velocity for the DC-motor. [m/s].
control .steering.front float Therequested steering angle for the front wheel pair. [rad].
control .steering.rear fl oat Asabove, for the rear wheel pair. [rad].

Table D.5: The blackboard variables maintained by cont r of .

D.2.4 Odometry

The Odometry-module are required to:
e Contain the implementation of the odometry model.

e Maintain blackboard variables containing the current odometry readingsyoéndf and
their time-derivatives along with andy .

The list of functions to be implemented {ddonet ry is found in table D.6. The odometry

Function Description

odUpdat e() Estimation of the robot posture amdand~y; using the odometry model
and stores the values on the blackboard.

odlnit() For odometry model initialization. (If needed).

odDestroy() For odometry model deallocation. (If needed).

Table D.6: Functionsimplemented in the module Qdonet r y.

model is implemented in the functiamdUpdat e, which estimates the posture of the robot using
the odometry model. The calculated values are stored on the blackboard for the controller to use.
The blackboard variables to be maintained byddenet r y module are shown in table D.7.

Name Type Description

odonetry. X i nt The position in x calculated by the odometry model.
odonetry.y i nt The position in y calculated by the odometry model.
odonetry. theta fl oat The orientation theta calculated by the odometry model.
odonetry. dot x i nt The change in x.

odonetry. doty i nt The changeiny.

odonetry. dottheta float The change inthe angle theta.

odonetry. eta fl oat The value ofp calculated using the odometry model.
odonetry. gammal fl oat The steering angle; found by odometry.

Table D.7: The blackboard variables maintained by Cdonet r y.
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D.2.5 Hardware Abstraction Layer (HAL)

The HAL module will contain the functions able to communicate with the servo and DC-motor
controller and the encoder-interface (PIC). The functions to be implemented are listed in table
D.8. hal ReadEncoder s reads the values of the encoders placed at each front wheel. The

Function Description

hal Act uat e() Applies the control signals to the servos and the DC-motor.

hal ReadEncoder s() Reads the values of the encoders, and places them on the blackboard.
hal I nit() Initialization of the module. (If needed).

hal Destroy() Deallocation of the module. (If needed).

Table D.8: Functionsimplemented in the module HAL.

change in value of each of the encoders with respect to the previous reading are stored on the
blackboard along with encoder values. The other way around, the furiioAct uat e applies

the values of the blackboard variables from table D.5 to the servos and the DC-motor. The used
blackboard variables are seen in table D.9.

Name Type Description
encoder. w2 i nt The current encoder value of wheel 2.
encoder . w3 i nt  The current encoder value of wheel 3.

encoder.delta.w2 int Thechange inthe current encoder value with respect to the
previous reading for wheel 2.
encoder.delta.w3 int Asabove,forwheel 3.

Table D.9: The blackboard variables maintained by hal .

D.2.6 Pathgen

The Pat hgen module is responsible of the generation of trajectories for the robot track. The

Function Description

pgGenerate() Generates the trajectory to be followed.

pglnit() Initialization of the module. (If needed).
pgDest roy() Deallocation of the module. (If needed).
pgUpdat e() Evaluates if the current reference posture is correct.

Replaces the current reference if necessary.

Table D.10: Functions implemented in the module Pat hgen.
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function pgGener at e generates a path from a startpoint to an endpoint. At the present im-
plemetation the generated path is a straigth line between the two points. The found trajectory is
saved in a variable to be used by the supervisor when setting the reference for the robot.

D.2.7 Main

The modulenai n is the main loop of the implementation. The execution progress illustrated in
figure 12.3 will be implemented here. No functions will be available for other modules in this

module.

D.2.8 Functions

The modulef unct i ons are considered as a toolbox, consisting of functions that are (or may
be) needed by more than two of the other modules. The list of functions to be implemented in the

module are in table D.11.

Function Description

rtl_print_float() Prints a float on screen.

print_matrix() Prints the contents of a matrix on screen
init_matrix() Initializes a matrix to the value zero for all elements.
add_matrices() Adds two matrices.

subtract _vectors() Subtracts two vectors.

transpose_matri x() Transposes a matrix.

mult_matrices() Multiplies two matrices.

scale_matrix() Multiplies a scalar to all elements of a matrix.

Table D.11: Functionsimplemented in the module Funct i ons.
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APPENDIX E

RTLIinux Installation Guide

This appendix describes howto install RTLinux 3.2-pre2 on a Redhat Linux 9.0 system. The files
to be used can be found on the enclosed CD, [@Binux\]. The files are:

rtlinux-3.2-pre2.tar.bz2 The source codes for RTLinux 3.2 prerelease 2.

linux-2.4.20.tar.nz2 The source codes for the Linux kernel version 2.4.20 suitable for RTLinux
installation.

Important note: The Linux kernel source codes distributed with RedHat Linux (e.g. 2.4.20-8) is
not usable for installing RTLinux. A “clean” version of the kernel sources must be used.
The steps of the installation are as follows:

1. Make sure you have RedHat set up appropriately. When installing RedHat you need to
perform a Custom install and select Development, Kernel Development, Utilities, and Select
Individual Packages.

2. Copy the files from the CD tbr oot/ or goto

ftp.rtlinux.confpub/rtlinux
ftp. kernel.org/ pub/linux/kernel/

to get newer versions. There is no guarantee that this installation guide will apply to other
versions than the ones used here!

3. Unpack the files usingunzi p2 andt ar into/ usr/src/rtli nux/:

cd /root

bunzi p2 li nux-2.4.20.tar.bz2

bunzi p2 rtlinux-3.2-pre2.tar.bz2
rm-rf Jusr/src/rtlinux

nkdir /usr/src/rtlinux

cd /usr/src/rtlinux

tar -xvf /root/linux-2.4.20.tar
tar -xvf /root/rtlinux-3.2-pre2.tar

L AR T -

4. Patch the Linux kernel source codes with the RTLinux source codes:
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$ cd linux-2.4.20
$ patch -pl < /usr/src/rtlinux/rtlinux-3.2-pre2/patches/\\
kernel _patch-2.4.20-rtl3.2-pre2

5. Configure the Linux kernel:
$ make xconfig

Make sure, that APM Support is disabled and that no generic driver for the serial port is
installed (if so, RTLinux’ excellent serial port driver will not work).

6. Compile and install the Linux kernel and the modules:

nmake dep
nmake bzl mage
make nodul es

@ B B ©

make nodul es_install
$ cp arch/i 386/ boot/ bzl mage /boot/rtzl mage

7. Configure the bootloader (here GRUB is used). Edit the fileot / gr ub/ gr ub. conf
so it looks something like:

defaul t =0 ti meout =10
spl ashi mage=( hdO, 1)/ gr ub/ spl ash. xpm gz
title RTLinux (2.4.20-rtl 3.2-pre2)
root (hdo, 1)
kernel /rtzlnage ro
r oot =/ dev/ hda6
title Red Hat Linux (2.4.20-8)
root (hdo, 1)
kernel /vminuz-2.4.20-8 ro
root =LABEL=/ initrd /initrd-2.4.20-8.ing

Here the root partitiord is placed o/ dev/ hda6. This is dependent on the disk parti-
tioning performed during install, and therefore it might be different in other installations.
Reboot the machine, and make sure you start up using the newly compiled kernel.

8. Configure and compile RTLinux

$ cd /usr/src/rtlinux/rtlinux-3.2-pre2

In -sf fusr/src/rtlinux/linux-2.4.20 |inux
make xconfig

nake dep

nmake

nmake devi ces

nmake i nstall

LR R T
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9.

10.

Post installation.To be able to run any real time programs, you need to load the RTLinux
modules:

$ rtlinux start

To start RTLinux automatically upon boot (if you select the rtlinux kernel), edit /etc/rc.d/rc.local
and put the following at the end of the file:

if [ ‘cat /proc/sys/kernel/osrelease' = "2.4.20-rtl3.2-pre2" ];then
fusr/bin/rtlinux start
fi

Important note: Be sure to copy the text exactly. Using the wrong accents or removing

spaces can cause the code not to work!

Additional information. It is strongly advised to sign up for the RTLinux mailing-list on
www. f sm abs. com There is also an archive of old postings which can help solving
many problems.
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APPENDIX F

Calculations

In this appendix calculations of different substantial equations are shown. In section F.1 an ex-
pression for the kinetic energh,:.; of a wheel is found. In section F.2 the expression behind the
short hand notation used in the Lagrangian formalism is derived.

F.1 Energy of a Wheel

In this section more substantial calculations are shown for the deviation of the total kinetic energy.
The energy of the wheel is given by the equation:

1 2T
Tw=75 | (X + yp + 23)pdy
Y
1 2 21 21
Tw =7 ( /0 Xppdy + /0 yhpdy + /0 Z',%pdz/;) (F.1)

In the following each of the three terni$, y2 22 is derived and integrated.

Deriving x3

x5 = X% —2xlfsin(a+0) —

2xri sin(¢) cos(y + 6) —

2xr(q + 0) cos(y)sin(y + 6) +

1762 sin?(a + 6) +

216r1 sin(a + 0) sin(v) cos(7y + 6) +

21r(6 + 6%) sin(a + 0) cos(¥) sin(y + 6) +

r?4? sin?(4) cos?(y + 6) +

2r2 (9 + 64) cos(9) sin(y) cos(y + 8) sin(y + 6) +
r2(4% + 264 4 62) cos?(¥) sin(7y + )

133



o
/ XBpudy = 2X°Tp, —
i 4x107p,, sin(a + 0) +
217621 p,, sin®(a + 0) + (F.2)
r242mp,, cos?(y + 0) +
r2(y% + 204 + 62)mp,, sin?(7y + 6)

Deriving y3

y& = y?+2ylfcos(a+6) —
2y ri sin(y) sin(y + 6) —
2yr(y + 6) cos(w)cos(y + 0) +
176% cos®(a + 6) +
210r1 cos(a + 8) sin(2) sin(y + 6) +
21r(6y 4 62) cos(a + 6) sin(¥) sin(7y + ) +
r?4? sin() sin?(y + 6) +
2r24) (4 + 0) cos(v) sin(p) cos(y + 6) sin(y + 6) +
r2(42 4 264 + 62) cos?(¢) cos?(7y + 6)

/ T puds = 29mpy +
4y10mp,, cos(a + 0) +
21762 1p,, cos®(a + 6) + (F.3)
r2%mpy, sin?(y + 0) +
r2(? 4 264 4 6%)mp,, cos>(y + 6)

Deriving 73

72 = r*¢?cos’(¥) (F.4)

2T
| oy = i, (F-5)
0

Result
Inserting equation F.2,F.3 and F.5 in equation F.1 yields:
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1 1 .
Tw = §x22p7r + §y22p7r + 2pml6(ycos(a+ 0) — xsin(a +0)) +

1.,. 1 5 1 . .
5/2‘92’2p7r + §r292¢22p7r + Zr2 (¥22pm + 26 + 6?) (F.6)
The following two relations are known:

m = 2mp (F.7)
lw = mr? (F.8)

Substituting equation F.7 and F.8 in equation F.6 yields:

1 1 :
Tw = §x2m+§y2m+m/9(ycos(a+9)—>'<5in(a+9))

1 . 1 i~ 1 1 . 1 .
~ 1242 w0292 + Sl A2 + =By + = Iy 62 F.9
+2 9m+2W91// +4\/\/’Y +2W9'y+4W9 ( )

Which is the result used in section 6.2.

F.2 Calculation of [T]¢, [T]y and [T],

The calculation of T']¢ is longer thaf 7], and[T], and is therefore devided into the calculation

of the two terms% (%—E) and%—z. To reduce the length of the expressions in the calculations of

[T]e, [T]y and[T], the matrix M is written as:

My 0 M
0 0 M,

In section 6.3 the total kinetic energy is found as:
4

Trotat = Tr+ Y Twi (F.11)
i=1

1 1 1.
= 5>‘<2(M +4m) + §y2(M +4m) + 5192(4/2m + 2l 4+ d’M + Ig)
- - R
tylw YN+ g DU+ Sl ) (F.12)
i=1 i=1 i=1

4
—x6 <2dM sin(6 + p) + mlz sin(aj + 9))

i=1

4
+y0 <2dM cos(6 + p) + mlz cos(a; + 0))
i=1
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With T defined as above the first term[ifh]e can be calulated as:

[ oT
d (8T> o d | ¥
dt\aé) ~— dt| ¥
d ]
1 [ 10 0 } RT(0)MR(0)ET + LR (0)MR(8)ET
o
_ 4|4 [ 010 } RT(O)MR(O)ET + LRT(O)MR(O)ET | 1 F13
dt | 0 ]
Lo 0 1]RTOMROE +1RT(OMRO):ET
i +3Iwvy - |
[ XMy + 36(My cos(6) — M3 sin(6))
_ % yMyp + %Q(MQ sin(G) + M3 COS(Q)) (F.14)
£ (26My + x(My cos(8) — Mssin(8)) + y (Mo sin()
I +Ms cos(6)) + lwvy) |
d .
= E <PE + %KIWV’Y> (F.15)
Where:
I M, 0 $(Ma cos(8) — M3 sin(6))
P = 0 M L (Mssin(8) + M5 cos(8))
| 2(Mscos(8) — Mzsin(8))  4(Mysin(8) + M3 cos(8)) My
[0
K = |o
1
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The second term dfT'],; is:

rar
oT ox
> = | &
o€ %
L 66
0
0

—2x6%dM cos(6 + p) — 4x6°ml cos(a + ) —
2y82dM sin(a + 0) — 4y6°mlsin(a + 6)

0 0 —6M;
= KETRTMO) | 0 0 oM, | R(A)E (F.16)
00 O

[T]e

From equation F.15 and F.18]; is given as:

J . 0 0 0 —O6Ms
[Tle = = <P§' + §Klwvfy> — 1o |&"RT ()| 0 0 oM, | R(6)E
1 00 O
= P£+ PE+ %K/Wm — Ki€TRT(O)NR(0)E (F.17)

WhereN is the matrix:
0 0 —16M;
N = 0 0o oM,
—30M5 36M, O

[Tly
_ d(oT\_oT _d (oT\_d 8(5Y" lwmd)
Mo = g (55) a0t (g) ~ e\
_od (18T, 1. 3
= E(Z o9 wm¥ + 79 /WM8—¢>
_d (e,
= (5 9 IWM¢>
1d . 1 )
= 54t (hwmd) = 5lwmy (F.18)

Wherek] =[1111].
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[Ty

Tho= g a—D‘a r(%)
(3

_d T/WMW) 3(%9/W7)
- dt oy

_d 1 5‘('yT) 1.+ o) d (1, 9(7)
= E + Z’Y /WMW + E —9/ 8’7
o d (1 a(AyT) d (1,
= o <2 o wmy ) + 4 50wke
1 1.
= §IWM"Y+ §QIWK2 (F.19)

F.3 Determining the Rank of C(7)

SinceX(vy) is the null space of;(v), the rank ofC;(y) is considered to see if the calculations
can be reduced. The intention is to show that the effective ragk(qf is 2, making the following
statement true:

[ sin vy —cosy; —lhcos(ar — 1)
Coly) = siny, —cosy, —hcos(as —¥2)
)= siny3 —cosvys —l3cos(as —y3)
| sinys —cosya —lacos(as — va)
[ sin v; —cosvy; —licos(a;j— ;)
siny; —cos7y;, —Ilicos(a;—y; .
~ / J jcos(a =) = Ci() (F.20)
0 0 0
0 0 0

If this is possible the null spacg(y) is more easily calculated &(y) = N(C;(v)) instead of
Z(7) = N (C(7)).

Using algebra it can be shown that the rank(pfvy) is 2 wheny; = «; = 0. First row
reduction is applied t@;(y) keeping in mind thaty; = v4, 72 =vzandh = h =hL =1, = I:
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siny; —cosvy; —/licos(ar — Y1)
siny, —cos7y, —hcos(ar — )
siny3 —cos7ys —l3cos(as —y3)
sinyg —cosvys —lgcos(og — Ya)

Ci(v) =

sinyy; —cosvy; —/lcos(as — 1)
siny, —cosy, —/cos(ar—y2)
siny, —cos7y, —/cos(az—2)
siny; —cosvy; —/cos(as— 1)

siny;  —cCosyi —lcos(a1 — 1)

N siny, — COS7Y» —/lcos(an — ¥2)
0 0 —I(cos(az — ¥2) — cos(aa — ¥2))
0 0 —I(cos(ag —y1) — cos(a1 — V1))

To ensure that the rank is 2, the following must be satisfied:
cos(az —72) — cos(az —¥2) =0
cos(ag — 1) —cos(ar — 1) =0

The anglesy; can be expressed by the angle

a1 = o1

Oy =T — 01
a3 =T+ a1
CX4:27T—CX1

Considering equation F.22:

cos(az — 712) — cos(az — 12) =0

U
cos(m+aj; —vp) —cos(m—a; —v2) =0
U
2sin(m —y)sin(a1) =0
U
sin(m—12) =0
U

Yo=0x£pmw, p=1273..
Extending the calculations to equation F.23 a similar result is obtaineg:for

y1=0+pr, p=1273..

F.3. Determining the Rank of C1(7)

(F.21)

(F.22)
(F.23)

(F.24)
(F.25)
(F.26)
(F.27)

(F.28)

(F.29)
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Since the maximum steering angles ar§ and 5 the only steering angle of interest here is
v1 = > = 0. Thus the rank o€’y (vy) is only 2 ify; =, = 0:

rank(Ci(v)) =071 = 12 =0 (F.30)

In order to investigate the rank when the angles are not zero, the rank of the matrix is estimated. A
reliable way to estimate the rank is to count the number of nonzero singular values. Small nonzero
singular values are assumed to be zero for practical purposes, and the effective rank of a matrix is
the number obtained by counting the remaining nonzero singular values [Lay, 1997]. A simulation
of the singular values as a function of the steering angles are shown in figure F.1 and F.2. Two
cases are evaluated: The case whgre v, and the case wherg = —v;.

Singular Values
25 ‘

15 7

Value
[
T
I

_05 | | | | |
—0.349066 —0.174533 0 0.174533 0.349066
Angle [rad]

Figure F.1:Thesingualar values of C;(vy) found using SVD for y; = <y, varied from —3 to 7.

Figure F.1 reveals that the rank is 2 if the steering angles are egualy,), or in other words
if the robot is moving in a straight line, since the smallest singular value is zero for all angles.
Figure F.2 confirms that the rank is 2 when the angles are both zero (as seen above), since the
smallest singular value is zero in that point. But for angles not equal to zero, the smallest singular
value increases to 0.1185. Although this singular value is relatively high, it is still assumed that
the rank ofCy(vy) is 2 wheny, = —7;.

F.4 Determining n and 7y;

The variables) and~y; are calulated using other known variables as shown in the following. From
the kinematic model, it is known that:

£ =RT(O)L()n(t) (F.31)
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Singular Values
25 ‘

2,//—__\ 4

15 7

0’\—“’//// B

Value
=
T
I

_05 | | | |
—0.349066 -0.174533 0 0.174533 0.349066
Angle [rad]

Figure F.2:The singular values of Cy () for v. = —v1. Thesingluar values are shown for theinterval —Z to Z.

Sincen and+y; are to be calculated for each sampling instant, the time dependengyctor be
omitted, resulting in:
£=RT(6)ZL(7)n (F-32)

Lettingy» = 0, and calculating fox, y andd yields:

x = (cosf (£cos(ay —y1) — £cos(y1) cos(—as)) +sinf (—£sin(y1) cos(—a)))n  (F.33)
y = (—sin@(£Lcos(a; — 1) — £cos(y1) cos(—a)) + cos 6 (—£sin(y1) cos(—az)))n (F.34)
6 = sin(y1)n (F.35)

Rearranging equation F.35 results in an expression:for

6
= — F.36
"= Sn0m) (F30)
Inserting equation F.36 in equations F.33 and F.34 then reduces to:
x = (cosf (£cos(as —v1) — £cos(y1) cos(—ap))) n+sinfK (F.37)
y = (—sin@ (£Lcos(a; —y1) — £cos(y1) cos(—a))) n + cos 6K (F.38)
With
K = £cos(—an)é (F.39)
Using thatcos(a; — 7y1) = cos a cosvy; + Sinag siny; equation F.38 is equal to:
y = — (£sin(cosay cosvy; + sinay siny; — cosvy; cos(—as))) M + cos K (F.40)
Once again inserting equation F.36 yields:
y = —£sinfcotyi(cosa; — cosap)f — £sinfsin a6 + cosOK (F.41)
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with

cos(v1)
= F.42
cot(y1) Sn(7) (F.42)
Rearranging the expression solving fgrresults in:
1 = arctan { .—Zsm Q(co§a1 — cos ar)6 } (F.43)
y +4sinfsina10 — cosK

Normally n would have been determine now using equation F.36. However this is not a valid
solution to determining since the equation implies that without a change in orientafipmust
be zero. This is not true. In fact the expression F.36 is only valid for determipiag a function
of 6. Instead an expression faris found by rearranging expression F.33:
X
_K(— cos @ cos(ay — 7y1) + cos 6 cosy; cos as + sinfsiny; cosay)

n= (F.44)

Thereby expressions farand~y; has been determined.
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APPENDIX G

Matrices

G.1 General

The change in generalizes coordinates:

S
y
6
Y1
3 Y2 ROZ(y) 0 0
a=19v|=|7|= 0 I4 [ ] (G.1)
Ya 5l o | L7
Y1
%
Y3
Vs

-

The rotation of a point i framéto E is performed with the rotation matrix

cosf sinf O
R(6) = | —sin® cosf 0 (G.2)
0 0 1

The rotation from framég to I is performed with the transpose of equation G.2.

—sind —cosfH O
RT(0)=6| cos§ —sind 0 (G.3)
0 0 0

G.2 Kinematic Model

One of two matrices expressing the no slip-constraint for the four wheel3. 4

cos(y1) sin(yl) hcos(y1—a1)
| cos(2) sin(y2) hcos(y2 — a2)
A= costn) sin(r3) s coss — ) (4

cos(va) sin(v4) lacos(ya — )
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The second matrix expressing the no slip-constraint for the four wheels. 4

Ry, 0 0 O
Ry 0 0
J = G.5
>(7) 0 0 R, 0 (G.5)
0 0 0 Ry
R, is radius of a wheel. The inverse of equation G.5 is:
2= 0 0 0
0 &~ 0 0
5 (y) = Rw G.6
0 0 0 &

C1(7) expresses the no lateral movement-constraint for all four wheel3: 4

sin(y1) —cos(yl) —/hcos(ar— 1)
i —cos(72) —! .
Ci(y) = | SN0r) —eos(r2) —hcos(az =) (G.7)
sin(y3) —cos(y3) —hcos(az —3)
sin(ya) —cos(y4) —lscos(os —va)
The contraint matrix\:
A~ J(VREO) 0 -

= (G.8)
Ci(r)R(®) 0 0
such that: _
£
ANg=N| g | =0 (G.9)
Y

> (vy) is the null-space of(7):
licos(vyi)cos(aj — ;) — licos(y;)cos(—a + i)
X(y) = | lisin(y;)cos(—a;+i) — [;sin(+;)cos(a; — ;) (G.10)
cos(i)sin(7y;) — sin(7yi)cos(7;))
The derivative of equation G.10:

[ Ailsin(an — v1)cos(y2) — Yalcos(ar — y1)sin(y2)+
Y1/sin(v1)cos(—az +¥2) + Y2/cos(v1)sin(—az + 2)

Y(V) = | Aalcos(y)cos(ar — 1) +Aulsin(v2)sin(ar — v1)+ (G.11)
Yalsin(y2 — az)sin(y1) — y1lcos(y2 — az)cos(v1)

Y1cos(y1 — Y2) — Y2c05(V1 — ¥2)

For simulation purposes two versionsXfvy) exists:

I cos(7y2) cos(ar — 1) — I cos(y1) cos(y2 — a2)
()= | Isin(y2)cos(ar —2) —/sin(y1) cos(y2 — @) (G.12)
sin(y1 —72)
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I cos(vs) cos(az — ¥3) — I cos(y3) cos(ya — ag)
Yr(Y) = | Isin(ya)cos(asz —y3) — Isin(73) cos(va — aa) (G.13)
sin(y3 —Ya)
The kinematic model matrix:
RT(6)x(y) O
S(q) = 0 / (G.14)
ST h(MEZ(y) 0

G.3 Dynamical Model

Matrices used to calculate the kinetic energy of the robot:

My, 0 M,
M=1| 0 M; Ms (G.15)
0 0 M,
My 0 %(l\/lg cos(f) — M3sin(0))
P = 0 M, $(Masin(8) + M5 cos(8))
$(Ma cos(8) — M3 sin(8)) (Mo sin(8) + M3 cos(6)) My
(G.16)
0 0 2(—Mysin(8) — M3 cos(8))
P=20 0 0 (M cos(8) — M3 sin(9))
L(—Masin(8) — Mscos(8))  3(Ma cos(8) — M3 sin(8)) 0
(G.17)
Ki=1|0 (G.18)
o
1
Ky = . (G.19)
- 1 -
0 0 —i6Ms
N = 0 0 FOM> (G.20)

—oM; 1M, O
Matrix equal to the transpose of the constraint matrix. Is used in the Lagrange equation:
RT(6)J] (v) RT()C] ()

A(q) = 0 0 (G.21)
—JI 0
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Vector of forces:

= [W ] = | Tws (G.22)

Vector which transformes the inputinto forces performing work on the generalized coordinates:
O3xs
Q(q) = (G.23)
lgxs

Inertia matrix. Used when writing the kinetic energy of the robot in a compact form:

0 0 0
[RT(OMR®)] 0o 0 0 0 O3x4
1 1 1
slw slw 5w 5lw
00 3w w0 0 0
00 3w iw 0 0
1 1 O4x4
D(q) = 0 0 iy 0 im o
0 0 $lw 0 0 3w
Tl 0
0 3w 0
0 0 2
4x3 4x4 0 §/W 0
I o 0 0 i |
(G.24)
Matrices and vectors for the resulting dynamical model:
ET(VET(y) 0
F(y) = (G.25)
0 Ig
(7,
f(v. u) 1(7.4) (G.26)
f(y, u)

flv.u) = 7(7)|[RO)PRT(6) + R(6)PRT(6) +
—ROYKinZT ()N + %ET(’Y)IWME(’Y)] () +

[RE)PRT(6) + 5T (RO 5ET (N EMT0N] 1+ K1 hw ¢
(G.27)
By, u) = %é/WKQ (G.28)
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H(y) = Hlév) ) IO ] (G.29)
slwm
Hily) = Z(v)[R(e)PRT(e)+%ET(7)/WME(7)IZ(7) (G-30)

G.4 Control by Feedback Linearization

As and Bs are matrices which describes the linear system after feedback linearization:

/
A, = O3x3  I3x3 and B, — O3x3 (G.31)
03x3 03x3 I3x3
Vector in the control law for the feedback linearization:
a(z) = =B (2)RT(O)X(v)n (G.32)
Matrix in the control law for the feedback linearization:
B(z) = RT(6)B1(2) (G.33)
Bi(z) =
[ hicos(yz)cos(ar — 1) (hcos(y2)sin(ar — 1) (= hsin(y2)cos(ar — 1) |

—hcos(yi)cos(—az +72)  hsin(yi)cos(—az +72))n  hcos(yi)sin(—az +¥2))n

hsin(y2)cos(ar — 1) (hsin(yz)sin(e — 1) (hcos(v2)cos(ar — 1)
—hsin(y1)cos(—az +72) —hcos(vi)cos(—az +72))n  hsin(y1)sin(—az +v2))n

sin(y1 —2) cos(y1 —72)n —cos(y1 —72)n |
(G.34)

Matrix of gain constants, used in the linear control law:

0.05 0 0 0001l O 0
Ke=| 0 005 0 0 0.001 0 (G.35)
0 0 005 0 0 0.001

A threshold vector which determines the state of the hybrid controller:

A= | a, (G.36)

G.5 Passivity-Based Control

Vector used to model the dynamics of the model:

m(q,u) = ST(q)D(a)S(q)u+ ST (q)n(q. S(q)u) (G.37)
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Matrix related to the inertia matrik(q):

D*(q) = ST (q)D(q)S(q)

Storage function used in the control design:

1
V=3

-
exinKpKin€Kin

Gain matrices used in the control law for the dynamics:

Ko

Ka

5 0
0 0.01
0 0
0 0
0 0
0.003 Isys

Gain matrices used in the control law for the kinematics:

KpKin

Kakin
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0
0
0
0

0.4

0
0
0
0
0

0.4

0.

0 0 0
0 0 0
00l 0 0
0 001 O
0 0 001 |
04 0 |
0.4
0 0 04
0.001 0 0
0 000l O
0 0  0.001
0 00l O 0 ]
0 0 00l 0
0 0 0 0.0l
0 0001 0 0
0 0 0001 O
01 0  0.001

(G.38)

(G.39)

(G.40)

(G.41)

(G.42)

(G.43)



APPENDIX H

Programming the PIC

This appendix explains how the PIC16F877 is programmed. First an introduction to MPLAB is
given, followed by information about the PIC C-compiler CC5X. The last section of this appendix
describes the bootloader, which was used to download the usercode in the microprocessor.

H.1 MPLAB

The development tool MPLAB v. 5.7 was used to program the PIC. This is a free tool from
Microchip and can be found in [CRPIC uti\MPLAB\]. In MPLAB itis possible to test the code
before implementing it in the microprocessor. The generated code can be simulated continuously
or line by line, making debugging easier. Furthermore MPLAB is able to show the time used to
execute the code, and the status of the different special function registers, memory banks etc.

|E|HE|-|HE3:3E|!']']EIHEI 17

e jEI:
Earagns origln B0 B =P .
char char s _recireed_chr recl peed_char; !LJ t' 009 =

char uT_high, P lew, w1 Mgk, w3 lews

e ————
wald Iwit gorisl comjwaid);

wald Lt parallelivelil; ¥ Ciman (in Fiemd
wald mesd_char{chas B);
wald clvar_purld{veld]. Cean | Heip |

Fild Piad_deCERrFEIMEId ]

L L FLE T T H

wald Lsr sfrlal peeeiwr]] Alaterrupt seriled Fedties
L¥ (RERF==i)
[

FRlTh. =iy Afblganle PE to sord {8icail :'I -
veeiveed_dhor-EREEy YT ] 8 oo umction ki Winiow BT
AF {realesea_dhwr — "B°) SCE Harw Bra Brc  Binay [har =
1 - 13 I T2 1T . B |
piugr _ln_revlewcd_cha =13 Lir @ on [] [TES T FT
At ian feg it P 1T1m1m
RCIF = & s/Begister 1% chearsd el [T [T T
[ poiath i 1] [LEETET
LR ithlus 1w FL [IEAREST]
REWFIL Far an i DeDED
Armdanm parta [ n neFapran
1 [T ET] i LR LIAERR RS
gurtn L1 0 oesansin
[{EL] iy EEE A qwid
gorts L1 LR Ll L]
Baragna arigle Sxmw Iris T rE% RRLELAE]
purkd i [] aidaedan
trisd T T T TE L ]
gorte ne LI L]
trise [LE) ¥ AREERI1 .
"I'!i'. & e lanp| weld) Enggan L1 LI L2 L L = =|
il | : Xl

Figure H.1: The development window of MPLAB. In the right side the stopwatch and special function register
windows.
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H.2 CC5X

In this project MPLAB was used in cooperation with the C-compiler CC5X. CC5X only supports
MPLAB v. 5.x and is a free PIC C-compiler. The compiler as well as a manual can be found on
[CD, \PIC uti\NCC5X\]. Using this compiler has been an effective and fast method of program-
ming the microprocessor.

In the following a description is given of how to use CC5X with MPLAB.

H.2.1 Installation and general use

1.

2.

First install CC5X on your computer as described initially.

Then copy the files * MTC and *.INI from the CC5X folder (directory) to the MPLAB
folder (this folder contains other .ini and .mtc files).

. Next time MPLAB is started, select the Projetistall Language Tool menu item. Select

CC5X from the Language Suite. Then the Tool Name (C-Compiler). Then the right Exe-
cutable (cicc5x\cc5x.exe or similar). Also mark the Command-line box. Then click OK.
CC5X will now be one of the selectable tools in MPLAB.

The following is a brief description on how to use CC5X in a new project under MPLAB.

1. Start MPLAB and create a new project (Proj@éétw Project). Chose a project name (*.prj)

and a directory where to locate this file and the other project files (C,H,HEX,ASM). Type
<Enter> or the OK button.

Edit Project is the next window. MPLAB suggests a Target Filename based on the project
name. This is automatically changed during step 4. Include Path do not have to be specified
(and should be left open initially). Library Path and Linker Script Path are not used any-
way. Use Development Mode to select the processor and simdataugger (ignore any
MPLAB warning at the current stage). Change Language Tool Suite to CC5X (this is one
of the menu items if the installation steps was completed).

. Double-click on the (target) name in the Project File box. A window named Node Properties

pops up. The typical selections are already marked. Options are disabled or enabled by
clicking on the box (second column) after the option name. Note that the right Include Path
(c:\cc5x) is required to make CC5X find the header files. Click the OK button. NOTE: It

is not enough to select the right processor in MPLAB alone. CC5X also need to know the
processor type, either through a command line option (-p16C74) or by a pragma statement
in the beginning of the program (#pragma chip PIC16C74).

. Click on the Add Node button. Type the name of your main C file or chose an existing

C file (samplel.c). It is recommended to try one of the supplied example files initially. If
the (sample) C file does not reside in the selected project directory, copy it to this directory
first. Note that files included in the main C file (and nested include) can not be listed in the
Project Files box. Click the OK button.
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5. Open the main C file. Compile the file using Projddake Project (F10). ProjetBuild
Node (Alt-F10) requires that the main C file is in the current active window. Double-click
on the error messages (if any) and correct the C code. Repeat the compilation until there
are no error messages. Use Open file to inspect the generated files. The *.occ file contains
compiler output information. IMPORTANT: If you selected the Error File command line
option, then MPLAB will suppress the output from the compiler and display the content of
the *.err file only. Change this option to the desired setting. It may be necessary to change
some of the command line options (Processor, Hex Format) if MPLAB pops up a warning
window.

H.3 Bootloader

This section gives a description of the bootloader and the procedures for downloading code to
the microprocessor. The bootloader is a piece of code that makes it possible to download new
usercode to the microcontroller from a terminal program through a serial connection. From now
on, when usercode is mentioned, this is the code written by the project group. Microchip, the
producer of the PIC16F877, has developed a bootloader. This bootloader was used in the project
and the source code can be found in [GBourcecodePIC16F87FBootloadek]. An application

note from Microschip concerning the bootloader can be found in [@atasheet®0732a.pdf].

Initially the bootloader, BOOT877.hex, is written into the microprocessor in the more common
way, using a EEPROM writer. The procedure using the EEPROM writer is only done once and
hereafter it is possible to download usercode from the terminal program. The terminal program
used on the PC is Tera Term Pro. Tera Term Pro can be found in\[GIQ, util\ Tera Term Prg].

Figure H.2 shows the wiring and the hardware parts needed in implementing a bootloader. The
procedure for using the bootloader is as follows:

e Onthe PC, set up the serial port baud rate and flow control (hardware handshaking).

Connect the serial port of the PIC16F877 device to the serial port of the PC.

e Press the red switch (SW1 in figure H.2) to pull pin RBO low.

e Power up the board to execute the boot code by pressing the black button.

e From the PC, send the hex-file to the serial port.

e Aperiod ".” will be received from the serial port for each line of the hex-file that is sent.
e An”S” or "F" will be received to indicate success or failure.

e The user must handle a failure by resetting the board and starting over.

¢ Release the red switch to set pin RBO high.

e Power-down the board and power it up again to start executing the usercode.
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Figure H.2:The parts and wiring needed when using the bootl oader
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